IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1968

A system for partial optimization in farm planning

Harold Frederick Hill Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Agricultural and Resource Economics Commons</u>, <u>Agricultural Economics Commons</u>, <u>Economics Commons</u>, <u>Operational Research Commons</u>, and the <u>Statistical Models Commons</u>

Recommended Citation

Hill, Harold Frederick, "A system for partial optimization in farm planning" (1968). *Retrospective Theses and Dissertations*. 16459. https://lib.dr.iastate.edu/rtd/16459

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

A SYSTEM FOR PARTIAL OPTIMIZATION

IN FARM PLANNING

204

by

Harold Frederick Hill

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE

Major Subject: Agricultural Economics

Signatures have been redacted for privacy

Iowa State University Ames, Iowa

HDI4II	*
H5525 TABLE OF CONTENTS	
C.2 119	
9	Page
HISTORY OF LINEAR PROGRAMMING AS IT APPLIES TO FARM PLANNING	1
Thesis Objective	4
REVIEW OF FARM PLANNING APPLICATION OF LINEAR PROGRAMMING	6
THE CASE FARM	17
The Soil Association	17
The Labor Supply	18
The Capital Coefficients	19
Cash Accounting System	19
Cropping Activities	21
The Livestock Activities	23
Accounting Activities	31
Fixed Costs	35
The Annual Repeating Cycle	35
PRESENTATION OF RESULTS	38
The Printed Output	38
Situation A	38
Situation B	50
Situation C	58
Situation D	67
Application of the Model	75
SHORTCOMINGS OF THE MODEL	78

T19846

TABLE OF CONTENTS

	Page
CONCLUSIONS AND SUGGESTED MODIFICATIONS OF THE MODEL	81
LITERATURE CITED	87
ACKNOWLEDGEMENTS	89
APPENDIX A	90
Description of the Monona-Ida-Hamburg Soil Association Area	90
APPENDIX B	94
Allocation of Production Coefficients for Crop and Livestock	94
Activities	
APPENDIX C	101
Name and Numerical Code of All Activities and Restraints in	101
the Model	
APPENDIX D	109
Coefficients Used in Demonstration Model Listed by Activity	109
and Restraint Number	

iii

HISTORY OF LINEAR PROGRAMMING AS IT APPLIES

TO FARM PLANNING

Since linear programming was developed shortly after World War II economists have found many uses for it. Agricultural economists have found it particularly useful in determining optimum organizations of farms, in specifying farm adjustments, in determining profit maximizing mixes of commodities, and in indicating optimum patterns of interregional resource use and product specialization (4,8).

Agricultural economists dealing with problems in farm management have found the technique of linear programming especially useful in farm planning. The first attempts in 1953-54 to use linear programming as a farm planning tool were somewhat crude and gave rather general answers. However, much of the difficulty with the early work resulted from the necessity to seek solutions with the aid of desk calculators (7,15). With the advent of better, more refined methods and high speed electronic computers with large capacities, linear programming has become extremely useful as a farm planning tool.

In the recent past much of the effort in using linear programming for farm planning has been directed into one of two areas. Either the work has been solely research oriented, using linear programming as a tool to solve a specific problem defined by the researcher or specific farms in separate soil associations have been programmed with a wide variety of alternatives. In turn, the results from these farms have been published as general guidelines for farms in that same association (9,10,18,22).

Linear programming has been an excellent tool for research and for

setting general guidelines, but it has been used little in solving problems or in forward planning at the individual farm level. The advantages of using the tool in farm planning are many, and more and more farmers are becoming interested in its use (1,6).

There seem to be two basic reasons why linear programming has not been used extensively for individual farm planning. First, input-output data is difficult to estimate accurately for the individual farm. Most farmers, even those who keep excellent records, do not have sufficient data to construct a usable programming model (16). In addition, historic data may be of little use in estimating production coefficients when shifts in production methods or volume are anticipated.

Second, even if all the necessary data were available, it would take considerable technical manpower to construct a linear programming matrix of sufficient size to include all the desired alternatives.

With present and potential data storage capacities of computers, it seems logical that some "master model" containing a wide variety of alternatives reflecting various production, cost, and management levels could be constructed and stored in the computer. A farm operator or planner could then choose those activities which best describe his unique situation. By specifying important resource or facility constraints, he could obtain an optimum plan, using a given set of price expectations, also stored, or a set specified by him.

Past arguments against using previously determined input-output data, or budgeting data, have been directed at the idea of non-applicability. In other words, if the data is not derived from the individual farm, it will not be accurate enough to give a usable solution. McFarquhar counters the

argument by stating that derived data also involves a considerable amount of questionable estimating. He believes that if enough alternatives are considered using localized budgeting materials, one method may be as accurate as the other (19).

During the last two years, the Extension Farm Management staff at Iowa State University has programmed several farm situations. These examples have been used primarily for teaching management principles. However, during the presentation of the programming material, farmers often raised questions about the possible results of the examples under wider ranges of production methods, price expectations or resource constraints. It became evident that farm operators prefer to compare several alternative plans and/or relate them to one optimum plan.

Since linear programming typically provides only one optimum solution, the planner does not know how close other plans might compare in income or resource use. The Extension Farm Management staff at Iowa State University has also found that many farmers find it difficult to think in terms of shifting completely into or out of a given enterprise as prices or resources change. Rather they prefer to hold certain enterprises constant while allowing others to change, given the fixed level of resources.

If a method could be devised to allow for partial optimization, it could be useful for the individual farm operator who might wish to compare various farm plans to his present operation and to some optimum plan. Such a method could also prove helpful in the classroom situation in teaching farm management principles.

Such a model could also allow for decreasing cost or increasing income activities. Past methods of farm planning using linear programming alone

have not been able to properly evaluate decreasing cost enterprises. Coupling such enterprises with a budgeting or partial optimization routine would increase the effectiveness of such a model.

Thesis Objective

The objective of this thesis is to attempt to construct a sample linear programming model which would meet the goals just mentioned, thus making linear programming both available and useful to larger numbers of farm operators. First of all, the model needs to be constructed in such a manner that the basic input-output data can be stored easily or left undisturbed as various farm situations are programmed.

Second, the model must be constructed in such a way that price expectations and resource availabilities can be easily altered from one solution to the next. Activity prices, therefore, must be formulated in terms of commonly used marketing units, such as livestock prices in hundredweight units instead of animal units. Crop selling or buying activities must be in terms of tons or bushels instead of acres.

Third, the printed output for each problem should include a written description of the optimum solution. Such an output report would allow farm operators or farm management specialists who are unfamiliar with the model to understand and interpret the output report. Professional staff time in the field could thereby be reduced. The output report should, therefore, give a written, instead of a numerically coded, identification of the activities included in or excluded from the optimum plan. An accurate description of resource use and income generated should also be provided.

Fourth, the model should be built to allow for complete budgeting, partial optimization, or complete optimization of a given situation. Such a model would permit a farm operator to try out several farm plans to compare incomes or resource use or to keep certain facets of his business organization fixed while optimizing on the remainder of his resources.

Such a model would seem to have a wide range of possible uses. It would eliminate much of the preparatory work usually encountered in gathering data and constructing a model. The possibility of optimizing, partially optimizing, or budgeting would give much greater flexibility with the same model. Because budgeting problems would be computed with a linear programming method, the user could also learn the computed marginal value of scarce resources and the income penalties associated with activities not in the solution. This information has not been available from conventional budgeting methods.

REVIEW OF FARM PLANNING APPLICATION OF LINEAR PROGRAMMING

As mentioned earlier, linear programming first was applied to farm planning problems during 1953-54. The early attempts in farm planning were somewhat crude and did not give real insight into the nature of the farm businesses being considered, primarily because the computational methods at that time still forced the planner to compute the problems with a desk calculator, limiting the number of possible alternatives and production coefficients.

King presented an example of an early attempt to use activity analysis, a computational method of linear programming, in 1953 (15). One of his examples involved a family farm with 60 acres of cropland in the Northern Tidewater of North Carolina. He considered only six enterprises: Irish potatoes, corn, soybeans, cropland pasture used for beef production, fall lettuce and fall cabbage. The fixed resources specified were cropland, production capital, and operator labor defined in two-month intervals. His method of budgeting the input-output coefficients entailed defining factor requirements in terms of \$100 net revenue units. Capital requirements were given in terms of yearly cash expenditure requirements to produce \$100 of net revenue.

With resources limited to 60 acres of cropland and \$2000 of production capital, the optimum solution was determined to be 61.086 units of Irish potatoes, 16.773 units of beef, and 0.213 units of fall lettuce. Net revenue produced was \$7807.20.

While such a model is satisfactory mathematically, its accuracy and applicability for farm planning purposes may be questioned. The first item

that comes into question is the unit of production, \$100 of net revenue, associated with the activities. While such a unit may give the same answer as any other unit, determining and understanding the input coefficients is confusing. Cost-of-production data is seldom listed in any other way than animal or acre units. Because the production units are specified in terms of \$100 net revenue, the net prices of the activities are equal. If the planner wished to change the price expectations or interpret the income penalties computed for activities not in the solution, much additional calculating would be necessary to relate the price changes or income penalties to animal or acre units.

Offering only six activities illustrates the potential of activity analysis for farm planning, but someone who wished to seriously look at the alternatives open to an individual farm operator would want to consider many more alternatives. If the six activities are the only ones the farmer wished to consider, a farm planning model should include alternatives within potato, corn, soybean, lettuce or cabbage production. There may be as much difference among activities formulated within enterprises as between them.

Much the same comment could be made about the resource restrictions. King included land, labor and capital, the three basic limitations in most businesses. If the 60 acres of land are homogeneous, one could scarcely argue with a single land restriction. The weakness of the resource restrictions lies in the difference between the labor and capital restrictions. Labor is precisely defined in terms of operator hours available in twomonth intervals. Capital, on the other hand, is defined as a single yearly restriction on production capital, which is not defined clearly. King

states that it includes basic production expenses, but he does not state if it includes other costs. Acknowledging that labor is a flow resource while capital is a stock resource, a single yearly capital requirement lacks precision. The various activities considered may require capital at different times of the year and may cease requiring capital long before the year is completed. They may also generate income which in turn can be used for succeeding activities. Thus, a \$2000 capital limitation may mean the peak net capital usage will be much less than the total limitation.

In summary, King's model serves the purpose of illustrating the procedure of activity analysis. However, his model falls short of meeting the needs of adequate farm planning methods. More activities need to be considered, capital usage should be more clearly defined, and the production units should be defined in more conventional terms.

A much more thorough application of linear programming reported about the same time is illustrated by Bowlen (3). Bowlen's objective was to determine the crop combinations that would maximize income under various resource situations for the major soil associations in Iowa. He had 14 representative townships throughout the state selected on the basis of the major soil association in each township. Land resources for each farm were limited to 160 acres, which was the most common size of farm at that time. For each township farm it was assumed that 154 acres would be tillable. The minimum acreage of hay and oats was determined for each farm, leaving the remainder open to other crop alternatives.

Labor resources for the operator were defined as 260 hours per month. Labor requirements for cropping activities were determined on a monthly basis. The amount of labor available for cropping activities was determined

by first computing labor availability for field work considering the weather factor. After total available cropping labor was determined, that amount of labor necessary for the minimum hay and oat acreage on each farm was subtracted, leaving the residual labor available for other cropping activities.

Two other labor resource situations were also considered. The first was for an additional 130 hours of family labor per month. The second was for unlimited hired labor available at an hourly wage.

Capital resources were divided into three levels. The first level was the average capital expenditure level for all Iowa farms in 1952. The second level was for 150 percent of the first level. The third level allowed for an unlimited supply of capital, which meant the farmer had access to all the capital he considered would be profitable in his operation.

As with land and labor, capital requirements for the minimum hay and oat acreage were first subtracted, with the remainder available for other cropping activities. Capital coefficients for each cropping activity were given as a single yearly figure on a per acre basis. The capital coefficient for each crop included both fixed and variable costs.

The defined fixed costs included overhead tractor costs, tractor operating costs, machinery depreciation, seed costs, and building costs. The variable costs were defined as real estate taxes, machine and labor hire. It should be noted that a fixed labor requirement was included in the capital costs of some of the cropping activities.

The cropping activities considered were corn, soybeans, oats, and flax and wheat in some areas. Each activity was defined in terms of acre units.

The net price for each acre activity was total revenue minus total costs. Because it was not the objective to consider livestock enterprises, they were omitted.

The results from such a model list the acres planted of each cropping enterprise, the monthly labor use, and capital use. In comparison to King's model mentioned earlier, Bowlen's use of activity analysis for farm planning was superior. The manner in which Bowlen derived his labor coefficients was thorough and entirely applicable to farm planning models being used at the present time. The acre units of production are much easier to interpret in terms of input-output data. The land resources were realistically separated into minimum required legume production, with only the remaining acreage available for optimization.

Analysis of Bowlen's model in terms of its applicability to general farm planning situations reveals some of the same shortcomings as King's model.

The first shortcoming is the lack of marketing units or activities to facilitate consideration of alternative price expectations. With Bowlen's method, a cropping activity included the growing costs and the sale price per acre. With 14 different farm situations and possibly as many cost and yield differences, each farm situation required recalculating the net price for each crop activity. A method of transfer rows and crop marketing activities would have facilitated much of the detail work required for price or yield changes.

The second shortcoming in Bowlen's model involves two aspects of his method of handling production capital. He indicated that each capital coefficient involved such costs as overhead tractor costs, tractor operating

costs, machinery depreciation, seed costs, building costs, real estate taxes, and machine and labor hire. Since Bowlen assumed a specific land resource and a given set of machinery, many of the capital costs he listed would be fixed costs to the entire business and not allocable to a given unit of production. The fixed costs should have been independently subtracted from the total income generated, since linear programming maximizes returns to the fixed factors to reach an optimum plan (8).

Bowlen also used King's method of listing his capital coefficients. The capital requirements are given as a single yearly requirement for each crop, regardless of the length and season of time each crop activity requires capital. The actual variable capital required in any one time period may be much less than would be indicated by Bowlen's model, especially with unlimited capital. Some work has, however, been done with redefining capital requirements and time periods.

Stewart stated that more attention needs to be placed on the derivation of capital coefficients since capital is so often the crucial limiting resource (23). In considering the single yearly capital coefficient, Stewart states:

"It is difficult to attach realistic meaning to the relationship given in this form (single yearly requirement). Clearly the operating capital requirements for any farm programme may not be expressed in terms of discrete coefficients for each activity unless there is some account taken of the time pattern of income from and expenditure on each activity. If no such account is taken, then the relationship in the above form (single linear relationship) violates the assumption of independence which is implicity in the linear model. That is, unless the total farm product is sold on the 365th day of the year being considered, then the total effective capital requirements of the whole farm programme will be less than the sum of the capital requirements of each enterprise." (23, p. 464)

Stewart then proceeded to set up a theoretical "capital profile" similar to the manner in which labor requirements are allocated seasonally or monthly. The major difference is that, unlike unused labor, unused capital in one period can be carried forward and used in the next period. Therefore, the capital profile was actually a series of cumulative balances. During the year, a production activity either requires more capital, enlarging the profile, or gives up capital in the form of receipts, decreasing the profile.

Nonassignable, or fixed, costs were deducted from the original capital available, leaving the residual to meet the variable cost requirements. With such a method, all capital costs, including fixed costs, must be met with the capital resource, but fixed costs are not broken down among the activities, as they are in Bowlen's work.

Stewart then constructed a linear programming problem using a New Zealand farm with 305 acres for mixed cropping and lamb feeding. The activities considered were five cash crops, five intermediate crops, and three sheep enterprises. Capital requirements were listed on a monthly basis, starting June 1. The solution showed capital was limiting in two of the twelve months. Each of the remaining months had a positive capital balance.

By allocating the capital requirements on a monthly or seasonal basis, a farm planner might determine the months or seasons in which capital would be limiting. If the limiting period was short in duration, the operator might be able to gain an extension of credit use and expand his operation to more fully utilize available capital the rest of the year. In such a case, the capital limitation in the restricting period might be

relaxed because of the positive balances maintained during the rest of the year.

In summary, Stewart illustrated that single seasonal capital coefficients may not be of sufficient accuracy to describe meaningfully the relationship between capital requirements and availability. Because capital is a stock resource it doesn't follow that monthly or seasonal capital coefficients are not as important as monthly or seasonal labor coefficients. Capital, like labor, may be limiting in only one period. The capital resource would have a positive marginal value only in the limiting period and not for the whole year as it would with the single sum coefficient.

Mention has been made that farmers are becoming increasingly familiar with linear programming and its potential applications to farm planning problems. An example of how farmers are learning of linear programming and how it is being used to assist in specific farm situations is illustrated in a popular journal by Huheey (12). The article cites the work done by R. J. Becker of Arizona State University and Becker's earlier work at the University of Pennsylvania.

After describing what linear programming is and what it can and cannot do, Huheey reports the planning process using an actual farm situation. The necessary input-output data was collected by an on-the-farm visit lasting little more than an hour. Two staff members then developed the enterprise budgets in a matrix form. The types of activities and resource restrictions used are listed in Table 1.

From the table one can observe immediately that no capital restrictions or requirements are included. The assumption was made that capital would not be a limiting factor within the resource restrictions specified.

1
linear programming
of
application
mode1
in
used
restrictions
resource
and
Activities
able 1.
-

Activities	Unit	Resources	đ
Dalry Cow	I Producing Cow	Max. Acres Owned	660
Cotton	1 Acre raised and sold	Max. Acres Rentable	340
Sell Hay	1 Acre raised and sold	Max. Hours Operator Labor 1	800
Sell Barley	1 Acre raised and sold	Max. Hours Operator Labor 2	800
Alfalfa Hay	1 Acre raised and fed	Max, Hours Operator Labor 3	800
Barley	1 Acre raised and fed	Max. Hours Operator Labor 4	800
Sorghum Silage	1 Acre raised and fed	Max. Hours Operator Labor 5	1600
Buy Alfalfa Hay	cwt. bought	Max. Dairy Cows	360
Buy Cottonseed Meal	cwt. bought	Pounds TDN Transfer	0
Buy Bedding	ton bought	Pounds DP Transfer	0
Rent Land	1 Acre rented	Pounds DM Transfer	0
Hire Labor 1	1 Hour - March-April	Max. Acres Cotton	147
Hire Labor 2	1 Hour - May-June	Tons Bedding Transfer	Ч
Hire Labor 3	1 Hour - July-August		
Hire Labor 4	1 Hour - September-October		
Hire Labor 5	1 Hour - November-February		

*(12, p. 65).

This obviated the necessity of specifying capital requirements on the activities.

Realizing that the model was built for a specific farm problem, one can identify several shortcomings that would lead to unnecessary difficulties in interpretation and/or to additional computational work. First, the cropping activity units are divided between acre units and hundredweight units, depending upon whether the crop is sold or bought. Such a division requires that the program planner always reinterpret the results to the farm operator. Also, if additional solutions are sought with crop price changes, the producing and selling activities would require additional computational work to arrive at a new net price.

The same argument can be applied to the dairy cow activity if milk prices were to be varied. The inclusion of several milk and grain transfer rows and selling activities with the activities defined in conventional marketing units would simplify the interpretation of results and facilitate multiple price programming.

Huheey emphasized the small amount of time required to derive the necessary input-output data, build the model, and make the machine computation. The farm visit took 75 minutes, constructing the matrix took eight technical man-hours and the machine computation took 30 seconds. Considering the small number of alternatives considered and amount of technical labor to build the rather small model, one wonders at the possibility of increasing the efficiency further. Certainly if additional alternatives or price situations were to be considered, additional staff time would be necessary to rebuild a matrix. Staff time would also be necessary to interpret the results to the farm operator.

One additional factor was noted briefly, but no importance was given to it. With the Becker approach each problem solution requires that a new set of data cards be written and punched. In addition to requiring additional time, writing and punching data cards risks additional errors and consumes time.

The only way to avoid the time lost by punching, computing and checking errors would be a linear programming model that has already been punched and tested. Such a model would also eliminate much of the need for staff time to set up the necessary input-output data.

THE CASE FARM

The case farm selected for this study was not an actual situation, but rather was synthesized from several actual farm situations. The case farm is composed of a total of 360 acres. Out of the total acreage, 35 acres are in farmstead, roads and waste and 75 acres are in permanent pasture. The 250 acres of tillable land are divided into two basic productivity levels. The higher productivity soil is composed of 200 acres capable of maintaining row crops three years out of five. The remaining 50 acres of cropland can maintain row crops only one year out of five. Out of the total of 250 tillable acres, therefore, a maximum of 130 acres can be in row crops during any one year.

The Soil Association

The Ida Monona soil association was chosen for the case farm. These soils are found primarily in western Iowa.¹ Because this soil type has rather limited production potential and includes a relatively large amount of permanent pasture, the question may be raised why a more productive soil was not selected.

It was felt that, given the objectives of this study, a model containing several land classes with restricted cropping use would be more desirable. If a model can be developed to consider these land use restrictions, a model to consider fewer restrictions, such as might be found in more productive soil associations, would certainly be feasible.

¹See Appendix A.

Season		Hours
Winter		930
December	200	
January	200	
February	200	
March	200	
April 1-15	130	
Spring		650
April 16-30	130	
May	260	
June	260	
Summer		690
July	230	
August	230	
September	230	
Fall		520
October	260	-
November	260	

Table 2. Seasonal labor supply for the case farm

The Labor Supply

The labor supply on the case farm was chosen to be typical of the supply on farms of similar size. Operator labor averaged 230 hours per month. However, it was also assumed that the operator would be willing to work longer periods during planting and harvesting seasons. Therefore, the operator labor supply was set at 260 hours per month during the peak labor periods.

Labor and capital constraints were formed for seasonal production periods. Table 2 indicates the seasonal labor supply used for this study. Any hired labor used on the farm was available at an hourly rate of \$1.50.

.

The Capital Coefficients

The capital coefficients for the case farm reflected all cash expenses to the farm business. The coefficients were also allocated into the same seasonal pattern as labor requirements. An annual requirement for breeding stock was also included for livestock raising activities.

If, in any production period, an activity required cash expenses, that amount of expense was defined as a capital requirement. If in the succeeding period additional expenses were required, only the additional expenses were defined as a capital requirement in the succeeding period. Similarly, when the activity was concluded, no additional coefficients were defined for succeeding periods.

It was assumed that the case farm had adequate grain storage and livestock facilities to accommodate the activities at any level at which they might enter. Therefore, no capital coefficients were specified for facilities other than the amount required for repairs to maintain them. Likewise, an adequate line of machinery was assumed to be available. The only machinery costs included in the capital coefficients were repairs and operating costs.

Cash Accounting System

To assist in better describing the solutions obtained from linear programming, a system of cash accounting was defined. All capital expenses and receipts were divided into three categories--breeding stock investment, livestock purchases and receipts, and basic production expenses and receipts.

Investments in breeding stock were separated from livestock purchases because, in an ongoing business, breeding stock may be raised rather than purchased. Nevertheless, a definite investment in parent stock would be required to start production at a given time. In addition, breeding stock represent a relatively liquid asset. A single-value requirement was defined for each activity that included breeding stock.

The second category of capital accounts was livestock purchases and receipts. All livestock purchased and fed for resale required a cash outlay during the season purchased. By specifying the seasonal purchase cost of the livestock, the output report would list the seasonal cash outlay for all livestock purchases. Similarly, livestock receipts were credited to the capital account during the season of sale.

The third category of capital accounts--production expenses and receipts--included such items as seed, fertilizer, fuel, repairs and other variable costs related to the cropping program, as well as supplement costs, veterinary and medical expenses, and other variable expenses related to livestock production. Cash rental charges for land and hourly wages for hired labor were also defined as production expenses. Production receipts included all crop sales as well as rent payments from pasture land.

The output report would include a description of total breeding stock investment, seasonal livestock purchases and sales, and seasonal production expenses and crop receipts. It will be shown later how the cash accounting system was used with crop and livestock marketing activities.

Table 3. Crop rotation alternatives

Class I Land

C-SB-C-O-M C-C-C-O-M C-C-O-M-M C-C-O-M

Class II Land

C-O-M-M-M

Cropping Activities

The crop activities considered were defined in a crop rotation framework. Four different crop rotations were considered for the 200 acres of Class I productive land. Only one crop rotation was defined for the 50 acres of Class II land. To account for total crop production and to assist in accounting for the cash flow within the business, the crop activities included all variable costs for growing and harvesting the crops. However, the crops produced were not sold from each activity but rather were listed in a transfer row from which they could be either fed to livestock or sold at the market price. The crop growing and harvesting activities, therefore, all have negative net prices. The latter reflect the total variable costs associated with each activity. The crop rotation alternatives are listed in Table 3.

The soybean yield was assumed to be 28 bushels per acre, and corn yields were assumed to be 80 bushels per acre for the Class I land and 70 bushels per acre for the Class II land. Oat yields were assumed to be 50 bushels and 40 bushels per acre, respectively. Hay yields were three tons per acre and decreased 0.2 tons per acre for each additional year the land

	C-SB-C-O-M	C-C-C-D-M	C-C-0-M	C-C-0-M-M	C-0-M-M-M
Land Class	I	I	I	I	II
<pre>Kields: Corn (bu.) Soybeans (bu.) Oats (bu.) Meadow (tong boy anniv)</pre>	160 28 ^b 3.0	240 0 3 0	160 0b 3 0	160 0b 50	70 0 8 4 0 8 4 8
Vinter variable costs	\$ 7.50	\$ 7.50	\$ 5.50	\$ 5.50	\$ 3.50
spring variable costs Summer variable costs	64.20 7.90	61.90 9.35	47.10 7.90	50.10 8.90	38.30 8.45
fall variable costs Cotal variable costs	$\frac{44.40}{\$124.00}$	$\frac{61.30}{\$140.05}$	<u>38.20</u> \$98.70	<u>38.20</u> \$102.70	<u>18.10</u> \$68.35
Vinter labor required (hours)	0.0	0.0	0.0	0.0	0.0
Spring labor required (hours)	0.0	10.8	7.7	7.7	4.6
Summer labor required (hours) . Fall labor required (hours)	6.2 7.3	5.1 8.6	4.9 5.9	5.9	3.2
lotal labor required (hours)	22.5	24.5	18.5	19.0	13.5

Table 4. Production coefficients for crop activities^a

ž

^aSource (11,14,20,24).

 b_{TWo} bushels of oats is assumed to equal one bushel of corn equivalent.

remained in meadow. Table 4 lists the production coefficients for the cropping activities.

Two additional crop activities involved crop harvesting.¹ One activity was a corn silage harvesting activity that, in terms of costs and labor inputs, transferred corn grain out of storage and into corn silage. The activity does not realistically describe the physical production methods, but it is mathematically correct. The second activity was a hay baling activity, since the hay activity listed in Table 4 is only a growing activity.

The model was also constructed to allow for either renting additional crop or pasture land or renting out unused rotated or permanent pasture land at prevailing cash rental rates.

The Livestock Activities

The livestock enterprises considered in this model included beef cows, dairy cows, beef feeding and hog farrowing and/or feeding. One beef cow activity was considered, two dairy cow activities differing only in the feed rations used, seven beef feeding activities, two hog farrowing activities differing only in the farrowing periods, and six hog feeding activities differing only in their timing. The production coefficients for these livestock activities are given in Table 5.

Like the cropping activities, the livestock activities provide for neither the purchasing nor selling of livestock. Rather, only the variable production costs associated with that enterprise enter the C-row value.

¹See Appendix B.

Ration	Dairy cow	Dairy cow	Beef cow
	Grain and hay	Silage, grain and hay	Hay and pasture
Production	11,000 lbs. milk	11,000 lbs. milk	90% calf crop
	\$ 65.00 beef income	\$ 65.00 beef income	18% saved for replacement
Breeding stock investment	490.00	490.00	steers @ 450#, nirs. @ 420# \$294.57
Winter variable costs	54,00	57,00	8.75
Spring variable costs	21,00	21,50	4.42
Summer variable costs	27.00	27.00	5.58
Fall variable costs	24.00	25.50	2.25
Total variable costs	\$126.00	\$131.00	\$ 21.00
Winter labor required Spring labor required Summer labor required Fall labor required Total labor required	30.4 14.6 17.2 <u>12.8</u> 75.0	30.4 14.6 17.2 75.0	3.5 3.0 <u>0.5</u> 8.5
Feed required Corn equiv. (bu.) Corn silage (tons) Hay (tons) Pasture (tons hay equiv.)	65.0 0.0 6.0 2.0	45.0 7.7 3.6 2.0	2.0 0.0 1.8 3.8

Table 5. Production coefficients for livestock activities^a

^aSource (5,14,21,24).

Ration	Yearling stee Grain & hay	r Yearling steer Silage, grain & hay	Steer calf Grain & hay	Steer calf Silage, grain & ha	ay
Purchase grade and weight Sale grade and weight Purchase date Sale date	Ch. 635 Ch. 1150 Oct. 1 July 1	Ch. 635 Ch. 1200 Oct. 1 Aug. 1	Ch. 450 Ch. 1050 Nov. 1 Oct. 1	Ch. 450 Ch. 1075 Nov. 1 Nov. 1	
Winter variable costs Spring variable costs Summer variable costs Fall variable costs Total variable costs	\$10.90 3.75 0.00 \$19.70b	\$11.40 4.25 0.75 5.55 \$21.95	$\begin{array}{c} \$ 3.05 \\ 10.75 \\ 4.20 \\ \frac{5.70}{\$23.70} b \end{array}$	3.05 10.75 4.95 6.45 525.20	
Winter labor (hours) Spring labor (hours) Summer labor (hours) Fall labor (hours) Total labor (hours)	4.2 2.2 0.0 8.0	4.2 2.2 0.8 <u>1.6</u> 8.8	$\begin{array}{c} 4.2 \\ 2.1 \\ 1.7 \\ 9.0 \\ \end{array}$	$ \begin{array}{r} 4.2 \\ 2.1 \\ 1.7 \\ \underline{1.8} \\ 9.8 \\ \end{array} $	
Feed requirements Corn equiv. (bu.) Corn silage (tons) Hay (tons) Pasture (tons hay equiv.)	60.0 0.0 0.0	40.0 4.25 0.3 0.0	62.0 0.0 0.8	40.0 4.0 0.3 0.0	
b					

"All net prices in programming matrix include value of death loss based on purchase price.

5

ł

25

Table 5 (Continued)

Ration	Steer calf Long term pastur	Yearling steer e Grain & hay	Yearling steer Silage, grain & hay	Heifer calf Grain & hay
Purchase grade and weight Sale grade and weight Purchase date Sale date	Ch. 450 Ch. 1125 Oct. 1 Dec. 1	Com. 650 Good 1025 Oct. 1 April 1	Com. 650 Good 1085 Oct. 1 May 1	Ch. 420 Ch. 870 Nov. 1 Aug. 1
Winter variable costs Spring variable costs Summer variable costs Fall variable costs Total variable costs	$\begin{array}{c} \$ 5.65 \\ 4.15 \\ 2.00 \\ \hline 7.55 \\ \$19.35 \end{array}$	$\begin{array}{c} \$ & \$.35 \\ 0.00 \\ 0.00 \\ 6.60 \\ \$14.95 \\ b \end{array}$	\$10.35 0.00 7.60 \$17.95	$\begin{array}{c} \$10.55\\ 4.80\\ 1.50\\ \underline{3.75}\\ \$20.60\\ b\end{array}$
Winter labor required (hours) Spring labor required (hours) Summer labor required (hours) Fall labor required (hours) Total labor required (hours)	$\begin{array}{c} 4.2 \\ 2.3 \\ 2.0 \\ \underline{2.5} \\ 11.0 \end{array}$	4.2 0.0 <u>1.6</u> 5.8	4.2 0.6 <u>1.6</u> 6.2	4.2 2.2 0.8 8.0 8.2
Feed requirements Corn equiv. (bu.) Corn silage (tons) Hay (tons) Pasture (tons hay equiv.)	46.0 0.0 1.2 1.3	42.0 0.0 0.8 0.0	30.0 3.25 0.25 0.0	47.0 0.0 0.8 0.0

26

Table 5 (Continued)

	1
100	
100.0	<u> </u>
- 14	GU 1 1
	~
	- C
- 11	-
	-
- 9	0.0
- 0	-
	1.12
	-
- 12	
	~
- 54	~
- 13	11.6
- 12	
- 9	~
	S. 1
- 44	×.
	- T
100	
- 207	- C. C.
~	1
12-1	\sim
- 1	٦ <u>١</u>
- 3	÷.
-	-i -
м.,	13
Δ,	2
2	
è	
ę	2
ì	GID.
1	GID.
Des La	GD.
1.0	L d D .

ł

Sow and two littersSow and two littersowing datesbecember and Juneding stock investment $$77,00$ age litter size 7.5 pigsage variable costs $3.3.55$ are labor required (hours) 11.7 and labor required (hours) 1.0 are labor required (hours) 1.0 are lubor required (hours) 1.0 are lubor required (hours) $2.3.0$ are lubor required (hours) $2.3.0$ are lubor required (hours) 1.0 are lubor required (hours) 1.0 are lubor required (hours)
--

cone gilt saved for replacement.

	\sim
	E.
	Ū.
	3
	C.
	-D
	11
	-
	10
	8
N	\leq
	\sim
	5
	1.000
	0
	-
	9
	55
	1

	F	eeder pigs p	urchased and	fed to marke	t weight	-
Purchase date Purchase weight Sale date Sale weight	Dec. 1 40 April 1 220	Feb, 1 40 June 1 220	April 1 40 Aug. 1 220	June 1 40 0ct. 1 220	Aug. 1 40 Dec. 1 220	Oct. 1 40 Feb. 1 220
Winter variable costs Spring variable costs Summer variable costs Fall variable costs Total variable costs	\$7.175 0.00 0.00 <u>0.00</u> \$7.175	\$4.815 2.36 0.00 \$7.175	\$0.00 5.74 1.435 0.00 \$7.175	\$0.00 2.40 4.775 0.00 \$7.175	\$0.00 0.00 3.85 <u>3.325</u> \$7.175	\$3.325 0.00 0.00 <u>3.85</u> \$7.175
Winter labor required Spring labor required Summer labor required Fall labor required Total labor required	$\begin{array}{c} 1.1 \\ 0.0 \\ 0.0 \\ 1.1 \end{array}$	$\begin{array}{c} 0.65 \\ 0.45 \\ 0.0 \\ 1.1 \end{array}$	$\begin{array}{c} 0.15 \\ 0.75 \\ 0.2 \\ 1.1 \end{array}$	$\begin{array}{c} 0.0 \\ 0.35 \\ 0.75 \\ 1.1 \end{array}$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.65 \\ \underline{0.45} \\ 1.1 \end{array}$	$\begin{array}{c} 0.45 \\ 0.0 \\ 0.0 \\ 1.1 \end{array}$
Feed requirements Corn equiv. (bu.)	11.4	11.4	11.4	11.4	11.4	11.4

Table 6. Crop and livestock marketing activities^a

Activity name	Unit	Price
Crops Bushels of corn sold Bushels of corn bought Bushels of soybeans sold Tons of hay sold Tons of hay bought Acres of cropland rented Acres of rotated pasture rented out Acres of permanent pasture rented out	bushel \$ bushel bushel ton ton acre acre acre acre	1.20 -1.30 2.70 18.00 -20.00 -20.00 -15.00 6.65
Livestock Gwt. choice steer calf bought Cwt. choice steer calf sold Cwt. choice fed steer sold in fall Cwt. choice fed steer sold in fall Cwt. choice fed steer sold in summer Cwt. choice long fed steer sold in winter Cwt. common yearling feeder steer bought Cwt. common yearling feeder steer bought Cwt. conton heifer calf bought Cwt. choice heifer calf bought Cwt. choice heifer calf sold Cwt. choice fed heifer sold Cwt. choice fed heifer sold Cwt. choice fed heifer sold Cwt. milk sold	cwt. cwt. cwt. cwt. cwt. cwt. cwt. cwt.	-30.50 28.75 27.50 -27.50 27.50 -24.00 -28.00 25.50 4.50

^aSource (24).

Table 6 (Continued)

Acti	vity na	me			Unit	Price
			*			
Cwt.	feeder	pigs	bought in Oc	tober	cwt.	\$-36.00
Cwt.	feeder	pigs	sold in Octo	ber	cwt.	36.00
Cwt.	feeder	pigs	bought in De	cember	cwt.	-36.00
Cwt.	feeder	pigs	bought in Fe	ebruary	cwt.	-36.00
Cwt.	feeder	pigs	sold in Febr	uary	cwt.	36.00
Cwt.	feeder	pigs	bought in Ap	bri 1	cwt.	-36.00
Cwt.	feeder	pigs	sold in Apri	1	cwt.	36,00
Cwt.	feeder	pigs	bought in Ju	me	cwt.	-36.00
Cwt.	feeder	pigs	bought in Au	Igust	cwt.	-36.00
Cwt.	feeder	pigs	sold in Augu	ISt	cwt.	36.00
Cwt.	market	hogs	sold in wint	er	cwt.	19.00
Cwt.	market	hogs	sold in spri	gu	cwt.	19.00
Cwt.	market	hogs	sold in summ	ler	cwt.	19.00
Cwt.	market	hogs	sold in fall		cwt.	19.00

For the beef cow activity, the calves produced were offered for sale or could be fed to market weight. Milk from dairy activities was offered for sale at the market price minus marketing costs. Likewise, for the beef and hog feeding activities, the purchasing and selling activities were separate from the feeding activities. All livestock marketing activities were in terms of hundred weight units and included the capital expenses or receipts discussed earlier. The complete list of marketing activities and their respective prices are listed in Table 6.

The marketing activities were defined separately from the growing and feeding activities so that 1) variable price programming for livestock activities would be facilitated since only the net price of the marketing activity would be changed from one solution to the next, and 2) the shadow prices (i.e., estimates of marginal value products and income penalties) would be reported in terms of commonly used marketing units.

Accounting Activities

Along with the marketing activities, other activities were added to give a fuller description of what the computed solution of the farm business organization actually contained. In terms of linear programming computation, these accounting activities could be thought of as purchasing activities with a zero net price. In recording the use of hired labor and capital, the activities purchased the inputs at appropriate wage and interest rates. Aside from activities that actually purchased an input, the accounting activities served no purpose in the computational procedures other than to make the printed output more informative. The list of accounting activities is given in Table 7.

Table 7. Accounting activities

Activity name	Unit	Price
Hours of winter operator labor used Hours of spring operator labor used Hours of spring operator labor used Hours of fall operator labor used Hours of winter labor hired Hours of spring labor hired Hours of spring labor hired Hours of summer labor hired Summer cash expenditures Spring cash expenditures Spring cash expenditures Spring livestock purchases Summer livestock purchases Summer livestock purchases Summer livestock purchases Summer livestock purchases Spring livestock purchases Summer livestock purchases Spring livestock receipts Spring livestock receipts Spring livestock receipts Summer livestock receipts Summer livestock receipts Spring livestock receipts Spring livestock receipts Spring livestock receipts Spring livestock receipts String livestock receipts String livestock receipts String livestock receipts String livestock receipts Spring livestock receipts Acres of corn	hour hour hour hour hour hour hour 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	\$0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Acres of meadow	acre	0.00
~		

5		
0		
55		
a		
-		
1.1		
1		
1		
0		
0		
~		
1		
645		
0		
-		
03		
F		

The accounting activities were combined with a relatively new feature, the bounding device, of the computer program. Previously, no simple method existed to limit an individual activity within the model. The new feature allows the planner to place a minimum or maximum restraint on each activity without specifying a separate restraint row for each restraint imposed.

When this feature is combined with the accounting activities, the planner can specify nearly all of the restraints and desired enterprise levels merely by specifying an upper or lower bound on each activity.

As an example, the planner might desire that the final plan contain exactly 50 head of fed cattle, and that 20 of those should be steer calves on a silage ration. The planner would then specify an equality or fixed bound of 20 on the steer calf activity with the silage ration. The computing routine would first choose the 20 steer calves, then select the most profitable of all of the remaining fed beef activities to meet the requirement of the remaining 30 head.

With the availability of the bounding feature on each activity, it then becomes possible to use the linear programming model for partial optimization or complete budgeting.

The level of each activity can be specified in such a manner that no choices for optimization are left to the computational procedure. The advantage of doing the budgeting within the linear programming framework is that, unlike usual budgeting techniques, the marginal value product of resources and the income penalties of activities not in the solution are also computed.

Fixed Costs

Because one of the purposes in constructing the model was to provide a detailed description of the computed solution, it was decided to include the fixed costs for the farm in the model. Since fixed costs cannot be included with a production activity, the bounding feature of the model permitted the use of separate fixed cost activities. With a net price of \$-1.00, the fixed cost activities are simply bounded at the same upper and lower bound as the level of the fixed costs. Where all fixed costs are accounted for in the model, the computed value of the final solution, whether budgeted or optimized, becomes an estimate of net farm income. If the planner desired, he could also include additional fixed cost activities allowing for family living expenses. Income taxes, however, would need to be omitted or only roughly approximated. If income taxes were debited, the value of the computed solution would then be an estimate of the increment in capital available to start the next production period.

The Annual Repeating Cycle

Several possibilities for defining the planning periods are available to a farm planner for use in linear programming. Traditionally, budgeting and linear programming applications to farm planning have used the one-year repeating cycle planning period. With this form of planning period, the optimum solution is reached immediately and, until some resource restriction changes, the organization of the farm is assumed to remain the same.

If one were to start with a beginning farmer and allow his business to change as the supply of resources increased, the single-year repeating

cycle could be used if the increase in capital from one solution were made available as a resource for the next problem. This method has its faults, however. If the increase in capital becomes irregular or large, the optimum business organization may shift erratically from one solution to the next, making the transitions in business organization difficult to interpret for an actual farm situation.

The computational procedure for more understandable business organization transitions is that of dynamic programming. This form of programming allows for multi-production period or multi-year planning periods in which the closing business organization is transferred directly to the beginning of the succeeding period. Such a programming model can describe more fully the transitions that occur as the business expands towards an optimum goal.

However, the dynamic model also requires a considerably larger inputoutput matrix to allow for the multi-period planning. For a dynamic model, defining and storing the amount of data necessary for the kind of master model intended in this study would require many times the effort needed for the present desired model. It was decided that at this time, the additional effort was not worth the additional benefit gained.

The planning model used, therefore, was the annual repeating cycle model. No attempt was made to estimate a value of beginning liquid assets. Rather, all capital used was simply accounted within the model. No attempt was made to allow for capital accumulation during the production cycle. Instead, all receipts and expenses were computed independently in the period in which they occurred. In other words, no capital restraints were specified.

One problem encountered with the repeating cycle model is that there

is no beginning and no end. Because livestock and crop activities overlap a twelve month period, there is no time when all production ceases. This situation corresponds to the actual circumstances on a typical grain and livestock farm.

PRESENTATION OF RESULTS

The demonstration model was applied in four different situations on the case farm to test its potential use. An optimum organization of enterprises was sought first with labor, land and livestock facilities as the resource constraints. This optimization is referred to hereafter as Situation A. The only change made for the second optimization, hereafter labeled Situation B, was to raise feeder pig prices. The third and fourth optimizations, labeled Situation C and D respectively, were partial optimization problems in which hogs or beef cattle were either specified at fixed levels or not considered.

The Printed Output

The tables of results given in this section illustrate the format of the printed output that ought to be used. This format is not now available with the linear programming routine being used at Iowa State University (13). However, because the format in which output is presented in this thesis had been developed for a linear programming routine previously used by members of the farm management staff, the assumption was made that a similar format could and would be developed for the present routine.

Situation A

As stated above, the first situation analyzed was one in which labor, land, and livestock facilities were resource constraints. The resource and facility constraints for Situation A are given in Table 8. All of the constraints unique to Situation A were implemented by placing upper bounds on

Table 8. Resource and facility constraints for Situation A

3-column constraints	Leve1	Type
301 Hours of winter operator labor available	930.0	Maximum
002 Hours of spring operator labor available	650.0	Maximum
03 Hours of summer operator labor available	690.0	Maximum
304 Hours of fall operator labor available	520.0	Maximum
121 Acres of Class I land owned	200.0	Maximum
22 Acres of Class II land owned	50.0	Maximum
334 Tons hay equivalent of permanent pasture owned	94.0	Maximum
Activity Bounds		
2005 Hours of winter labor hired	0.0	Upper bound
2006 Hours of spring labor hired	650.0	Upper bound
2007 Hours of summer labor hired	0.0	Upper bound
2008 Hours of fall labor hired	520.0	Uppe bound
2036 Number of dairy cows	20.0	$U_{\Gamma_{1}}$ er bound
2037 Number of beef cows	50.0	Upper bound
2038 Number of cattle fed	150.0	Upper bound
2039 Number of litters of pigs	80.0	Upper bound

	÷,	2
	10	ū.
	2	4
	2	2
	÷,	Ξ.
-	÷	đ.
	1	3
	2	4
	ł	đ.
	5	2
3		2
	-	1
		2
	÷,	2
	'n	5
1	2	
1	۰.	2
	ſ	2
	c	ΰ.

Type	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Upper bound	Fixed bound	Fixed bound	Fixed bound
Level	560.0	0.0	120.0	20.0	20.0	150.0	150.0	150.0	150.0	150.0	150.0	1250.0	1900.0	850.0
-column constraints	040 Number of hogs fed	056 Tons of hay sold	058 Acres of cropland rented	168 Sow and two litters farrowed in December-June	169 Sow and two litters farrowed in February-August	180 Feeder pigs started in December	181 Feeder pigs started in February	182 Feeder pigs started in April	183 Feeder pigs started in June	184 Feeder pigs started in August	185 Feeder pigs started in October	200 Real estate taxes	201 Machinery depreciation	202 Building depreciation

activities rather than specifying B-column, or right-hand-side, elements.

It was assumed that capital would not be a limiting factor, given the other resource constraints. Similarly, it was assumed that labor would or could be hired only during the spring and fall seasons. The assumptions for labor were not meant to approximate a realistic labor supply, but rather were meant to test the potential size of the business with additional labor during the periods of typical labor shortage. The amount of additional cropland that could be rented was restricted to the amount the operator could manage with his existing machinery inventory.

The livestock facility restrictions were selected to approximate the buildings commonly found on many farms of similar size. The seasonal restrictions were placed on hog farrowing and feeding activities to keep hog production within the facility limitations during each season.

The optimum solution to Situation A is given in Table 9. The total computation time required for this optimization was 1.27 minutes.

The optimum solution shown in the table indicates that all of the operator labor was utilized, and labor was hired in both spring and fall. Since available hired labor was not fully used in the spring and fall, however, the report indicates that labor was not restricting in those two seasons. By contrast, Section 3 shows that the marginal value product of winter and summer labor is \$3.63 and \$5.23 respectively.

Section 1 of the output report shows that a total of \$54,875.14 was required for cash expense and livestock investment. Seasonal cash expenditures, livestock purchases, and livestock receipts describe the seasonal cash flow. By subtracting all cash expenditures within a season, excluding the yearly breeding stock investment, from all cash receipts, it can be

Table 9. Optimum solution to farm Situation A

	_	
ľ		1
	¢	1
	C	2
•	T	ł
	÷	í
	5	
ł	à	ň
ĉ	1	1

1

Activities in the optimum plan

Level of Net price from activity in plan original model

	URCE: UPPENDEN		
POO1 Hours winter operator labor used	930.00	0.00	
POO2 Hours spring operator labor used	650.00	0.00	
P003 Hours summer operator labor used	690.00	0.00	
PO04 Hours fall operator labor used	520.00	0.00	
PO06 Hours spring labor hired	498.89	-1.50	
PO08 Hours fall labor hired	372.33	-1.50	
P009 Total cash expense and livestock investment	54,785.14	0.00	
PO10 Winter cash expenditures	7,701.92	-0.07	
PO11 Spring cash expenditures	5,863.06	-0.07	
P012 Summer cash expenditures	1,914.45	-0.07	
PO13 Fall cash expenditures	5,604.05	-0.07	
PO14 Breeding stock investment	8,493.95	-0.06	
PO15 Winter livestock purchases	2,059.44	-0.07	
PO16 Spring livestock purchases	2,160.00	-0.07	
PO18 Fall livestock purchases	20,988.27	-0.07	
PO23 Winter livestock receipts	52,676.25	0.00	
PO24 Spring livestock receipts	6,270.00	0.00	
PO25 Summer livestock receipts	7,356.75	0.00	
PO26 Fall livestock receipts	1,107.78	0.00	
PO30 Acres of corn	138.43	0.00	
PO32 Acres of oats	54.21	0.00	
PO33 Acres of meadow	78.43	0.00	
PO37 Number of beef cows	28.55	0.00	
PO38 Number of cattle fed	150.00	0.00	
PO39 Number of litters of hogs	2.15	0.00	
PO40 Number of hogs fed	458.06	0.00	
PO52 Bushels of corn fed	12,247.73	0.00	
PO55 Tens of hay baled	17.97	-6.65	
PO57 Tons of hay bought	213.43	-20.00	

,

ctivities in the optimum plan	Level of activity in plan	Net price from original model	
058 Acres of cronland rented	21.06	-20.00	
D63 Tong of meadow used as washing	200 51	0 00	
070 Cwt. choice steer calf bought	617.32	- 30.50	
075 Cwt. choice steer long fed sold in winter	1,687.50	27.50	
079 Cwt. choice heifer calf sold	28.55	27.00	
080 Cwt. choice fed heifer sold	39.98	25.50	
086 Cwt. feeder pigs bought in October	60.00	-36.00	
089 Cwt. feeder pigs bought in February	57.21	-36.00	
091 Cwt. feeder pigs bought in April	60.00	-36.00	
096 Cwt. market hog sold in winter	330.00	19.00	
097 Cwt. market hogs sold in spring	330.00	19.00	
098 C t. market hogs sold in summer	333,55	19.00	
099 Cwt. market hogs sold in fall	17.73	19.00	
102 5 acre rotation of C-C-C-O-M on Land I	42.11	-140.05	
105 5 acre rotation of C-O-M-M-M on Land II	12.11	-68.35	
140 Beef cow on pasture	28.55	-21.00	
2150 Choice steer calf long fed on pasture	150.00	-22.10	
2168 Sow and two litters farrowed in December & June	1.07	-90.70	
2181 Feeder pig started in February	150.00	-7.175	
2182 Feeder pig started in April	150.00	-7.175	
2184 Feeder pig started in August	8.06	-7.175	
2185 Feeder pig started in October	150.00	-7.175	
2200 Real estate taxes	1,250.00	-1.00	
2201 Machinery depreciation	1,900.00	-1.00	
202 Building depreciation	850.00	-1.00	

100000	(MARKA)
0 1000	
Trutation (TOPTO

5	1	Į
	F	111
•	-	
1	0	ŝ.
ç	1	ŝ

plan
optimum
the
in
not
tivities
Ac

Income penalty per Net price unit of activity if from forced into plan original model

-2.02 -1.50	-3.62 -1.50	0.04 -0.07	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0,13 1.20	0.06 -1.30	0.0 -0.95	0.53 2.70	3.40 18.00	0.57 15.00	0.48 -15.00	0.30 6.65	3.88 28.75	2.43 27.50	0.00 -27.00	1.81 27.50	0.00 -24.00	2.10 25.50	2.96 -28.00	0.67 4.50	2.52 36.00
P005 Hours winter labor hired	P007 Hours summer labor hired	P017 Summer livestock purchases	PO19 Winter cash receipts	PO20 Spring cash receipts	PO21 Summer cash receipts	P022 Fall cash receipts	PO31 Acres of soybeans	PO36 Number of dairy cows	PO50 Bushels of corn sold	PO51 Bushels of corn bought	PO53 Tons of corn silage harvested	PO54 Bushels of soybeans sold	P056 Tons of hay sold	PO60 Acres rotated pasture rented out	PO61 Acres rotated pasture acquired	PO62 Acres permanent pasture rented out	PO71 Cwt. choice steer calf sold	P072 Cwt. choice yearling steer sold in fall	PO73 Cwt. choice yearling steer bought	PO74 Cwt. choice yearling steer sold in summer	P076 Cwt. common yearling steer bought	P077 Cwt. good yearling steer sold	PO/8 Cwt. choice heifer calf bought	PO84 Cwt. milk sold	PO87 Cwt. feeder pigs sold in October

Section 2 Income	e penalty per	Net price	
unit c Activities not in the optimum plan force	of activity if ed into plan (from original model	
PO88 Cut. feeder nigs boucht in December	0 0	- 36,00	
P090 Cwt. feeder pigs sold in February	2.52	36.00	
P092 Cwt. feeder pigs sold in April	2.52	36.00	
P093 Cwt. feeder pigs bought in June	0.0	-36.00	
P094 Cwt. feeder pigs bought in August	0.0	-36.00	
PO95 Cwt. feeder pigs sold in August	0.97	36.00	
P101 5 acre rotation of C-SB-C-O-M on Land I	0.0	-124.00	
P103 4 acre rotation of C-C-O-M on Land I	19.63	-98.70	
P104 5 acre rotation of C-C-O-M-M on Land I	50.16	102.70	
P128 Dairy cow on grain and hay ration	0.0	-125.90	
P129 Dairy cow on silage, grain and hay ration	11.40	-130.90	
P151 Choice steer calves on grain and hay ration	1.00	-26.44	
P152 Choice steer calves on silage, grain and hay ration	0.00	-27.94	
P153 Choice yearling steers on grain and hay ration	3.36	-21.41	
P154 Choice yearling steers on silage, grain and hay ration	0.0	-23.66	
P155 Common yearling steers on grain and hay ration	3.96	-16.51	
P156 Common yearling steers on silage, grain and hay ration	0.00	-19.51	
P157 Choice heifer calves on grain and hay ration	31,70	-22.94	
P169 Sow and two litters farrowed in February and August	4.66	-90.70	
P180 Feeder pigs started in December	0.49	-7.175	
P183 Feeder pigs started in June	0.98	-7.175	

ţ.

Section 3

Restrictions that are limiting the optimum plan	Marginal value product
R01 Hours winter operator labor available	3.63
RO2 Howrs spring operator labor available	1,60
RO3 Hours summer operator labor available	5.23
RO4 Hours fall operator labor available	1.60
R13 Winter cash expenses	0.07
R14 Spring cash expenses	0.07
R15 Summer cash expenses	0.07
R16 Fall cash expenses	0.07
R17 Winter livestock purchases	0.07
R18 Spring livestock purchases	0.07
R19 Summer livestock purchases	0.03
R20 Fall livestock purchases	0.07
R21 Acres land quality I	32,53
R22 Acres land quality II	10.27
R29 Corn grain harvest transfer, bushel	1.33
R30 Corn silage transfer, ton	10.91
R31 Soybean transfer, bushels	3.23
R32 Standing meadow transfer, hay equiv, tons	5.56
R33 Hay transfer, tons	21.40
R34 Permanent pasture transfer, hay equiv. tons	5.56
R35 Feeding corn transfer, bushel	1.33
R38 Milk transfer, cwt.	5.17
R39 Choice steer calf feeder transfer, cwt.	32.64
R40 Choice yearling steer feeder transfer, cwt.	28.89
R41 Common yearling steer feeder transfer, cwt.	25.68
R42 Choice heifer calf feeder transfer, cwt.	27.00

Section 3

Marginal value product 38.52 25.50 27.50 38.52 38.52 38.52 19.00 36.97 38.52 19.00 19.00 19.00 29.93 27.60 11.36 0.06 14,313.75 29.31 Restrictions that are limiting the optimum plan Summer choice fed beef transfer, cwt. Winter choice fed beef transfer, cwt. Fall choice fed beef transfer, cwt. Spring good fed beef transfer, cwt. Feeder pig transfer cwt. December February Choice fed heifer transfer, cwt. October winter August spring summer Feeder pig transfer cwt. April June fall Breeding stock investment Feeder pig transfer cwt. transfer cwt. R59 Market hog transfer cwt. transfer cwt. R56 Market hog transfer cwt. Market hog transfer cwt. Feeder pig transfer cwt. R57 Market hog transfer cwt. R68 Fed beef capacity, head Net farm income Feeder pig Feeder pig R44R46 R47 R50 R52 R43 R45 R53 R55 R58 R84 R51 R54 0

shown that only in the fall season are the cash expenses greater than the cash receipts. Thus, if all capital for cash expenses and livestock purchases were borrowed, the interest payments would be less than the amount that is charged in the model because capital would be borrowed for less than the full year. It should be noted that all cash receipts to the business during the year came from livestock sales, indicating that all crops were fed to livestock. No corn was bought but more than 200 tons of hay were purchased. Twenty-one acres of additional cropland were rented.

The description of the cropping program indicates that corn production dominated the cropping system, given the rotation constraints for the land. From Section 2 of Table 9 the income penalty for (growing and) selling one bushel of soybeans is \$0.53. This indicates that with the crop coefficients assumed the sale price of soybeans must increase by \$0.53 per bushel before soybeans can begin to compete with corn production. The minimum competing sale price of soybeans is also found in Section 3 in the soybean transfer row.

Similarly, there is an income penalty for either buying or selling corn. The income penalty for selling corn is \$0.13 per bushel. Therefore, the sale price of corn must increase by that amount before it becomes competitive with feeding the corn to livestock. One may conclude, therefore, that the marginal feeding value of corn is \$1.33 per bushel. Such a value, however, is greater than the purchase price of \$1.30 for corn, and yet there is a \$0.06 income penalty per bushel for buying corn. The apparent discrepancy is explained by the fact that there is a seven percent interest charge on all production expenses. This increases the cost of purchasing and feeding a bushel of corn to \$1.39. Subtracting the \$1.33 marginal

feeding value of corn leaves an income penalty of \$0.06 per bushel.

The marginal value product of both Class I and Class II land is given in Section 3 of the output report. It should be noted that the marginal value product of the Class I land is more than three times that of the Class II land. The farm planner could use these values to estimate the value of an additional acre of either class of land to the operator. By subtracting the annual fixed costs associated with each class of land and capitalizing the remainder at the desired interest rate, the break even purchase price could be determined for an additional acre of each class of land.

The advantages of the use of marketing activities is clearly evident in the description of the livestock program. The marketing activities in Section 1 account for the total weight of each type and grade of livestock bought and sold. Of more importance, however, are the marketing activities in Section 2.

The first livestock marketing activity reported in Section 2 is P071 (selling choice steer calves). The income penalty attached to this activity is \$3.88 per hundredweight. The income penalty indicates the reduction in net income that would have occurred if the operator had sold his steer calves after having once bought them. The reduction in net income is also the amount that must be added to the present selling price of choice steer calves to bring the selling price of choice steer calves in line with the buying price. As with the income penalty for buying corn, the income penalty for selling calves is composed of the difference in the selling and buying price and the interest charge on the purchase cost.

The income penalties for the sale of choice fed steers in the summer

or fall indicate the relative disadvantage of the two feeding systems associated with those two seasons. Although only one cattle feeding activity entered at the maximum level, Section 3 indicates that the marginal value product of feeding space for an additional steer is \$11.36.

The income penalty for selling 100 pounds of milk is \$0.67. Even though there is no income penalty associated with one of the dairying activities, the \$0.67 indicates that an increase of this amount in the price of milk would be necessary to make either of the dairying activities competitive. The minimum price of milk to make dairying competitive is then shown in the milk transfer row in Section 3.

Stated another way, the income penalty for milk sales indicates that with cows producing at the 11,000 pounds level, the income penalty per cow, on the margin, would be \$73.70.

The optimum solution also indicated that only two litters of hogs would be farrowed, but that 458 pigs would be fed. All the pigs that were not raised were purchased as feeder pigs. Given the production coefficients, the price relationships favored purchasing feeder pigs rather than raising them. Section 3 of the output report indicates the marginal value product of feeder pigs in five out of six of the feeding periods is \$38.52 per hundredweight.

Situation B

The case farm was optimized again, using the same resource and facility restriction as in Situation A, but the purchase price of feeder pigs was raised from \$36.00 per hundredweight, or \$14.40 per head, to test if more hogs would be farrowed instead of purchased. To have an impact on the

profitability of purchasing feeder pigs the cost would need to be equal to or greater than \$38.52 mentioned above. A price of \$40.00 per hundredweight, or \$16.00 per pig was selected.

The advantage of using marketing activities with conventional units of measurement is illustrated by the price adjustment in feeder pigs. To raise the price to \$40.00 per hundredweight, the ten cards that included the prices for the sale or purchase of feeder pigs were taken from the input data deck and replaced with ten new cards specifying the \$40.00 price. No additional budgeting was necessary. Had conventional activity definitions been used in the model or had the original C-row value on marketing activities been stated in terms other than hundredweights, more work would have been required. The optimum solution is shown in Table 10. The total computation time was 1.31 minutes.

The results from Situation B reveal some of the interdependencies that occur in farm planning which are difficult or impossible to illustrate with budgeting alone. The increase in the price of feeder pigs decreased the number of feeder pigs purchased, increased the number of litters farrowed, and decreased the total number of pigs fed to market.

Along with the changes in the hog enterprise, beef cows were eliminated and total cash expenses and livestock purchases were reduced more than \$10,000. No additional cropland was rented, and the amount of labor hired was reduced. In addition, 33 acres of rotated pasture were rented out.

With all of the reductions in capital expenditures and livestock and crop production, net farm income was reduced by only \$290.78. This small income reduction for Situation B suggests that the additional capital required for Situation A was returning very little above the 6 and 7% borrow-

Section 1	Level of	Net price from	
Activities in the optimum plan	activity in plan	original model	
 P001 Hours winter operator labor used P002 Hours spring operator labor used P003 Hours summer operator labor used P004 Hours spring labor hired P006 Hours spring labor hired P008 Hours spring labor hired P009 Total cash expense and livestock investment P010 Winter cash expenditures P011 Spring cash expenditures P013 Fall cash expenditures P013 Fall cash expenditures P013 Fall cash expenditures P014 Breeding stock investment P015 Spring livestock purchases P018 Fall livestock purchases P018 Fall livestock receipts P019 Winter cash receipts P020 Spring livestock receipts P021 Summer cash receipts P023 Winter livestock receipts P025 Summer livestock receipts P025 Summer livestock receipts P033 Acres of cats P038 Number of cattle fed P038 Number of cattle fed P038 Number of cattle fed P030 Bushels of corn sold P030 Bushels of corn sold P030 Bushels of corn sold 	930.00 650.00 650.00 690.00 520.00 7,727.96 5,672.79 7,727.96 5,672.79 1,889.61 4,626.84 1,753.37 20,587.50 241.15 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.23 27.23 26.00 26.00 26.00 26.00 27.23 26.00 26.00 27.23 26.00 26.00 26.00 26.00 27.10 26.00 26.00 26.00 27.10 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.10 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 27.00 26.00 26.00 27.00 26.00 27.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 27.00 26.00 26.00 27.000 26.000 26.000 27.000 26.000 26.000 26.000 27.000 26.000 26.000 27.000 26.000 26.000 26.000 26.000 27.000 26.000 26.000 27.000 26.000 26.000 27.000 26.000 26.000 26.000 27.0000 27.000 26.000 26.000 26.000 26.000 26.000 27.0000 26.000 26.000 26.0000 27.0000 26.0000 27.0000 26.0000 27.0000 26.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.0000 27.00000 27.00000 27.0000000000	$\begin{array}{c} 0 & 0 \\$	

Table 10. Optimum solution to farm Situation B

Section 1			
Activities in the optimum plan	Level of activity in plan	Net price from original model	
DA52 Buchele of comm fed	00 000 11	00.0	
IAN DATE TO A COLUMN TEA	CU.000.11	00.0	
PO57 Tons of hay bought	180.00	-20.00	
PO60 Acres of rotated pasture rented out	33.63	15.00	
P063 Tons of meadow used as pasture	101.00	0.00	
P070 Cwt. choice steer calf bought	675,00	-30.50	
P075 Cwt. choice yearling steer long fed sold in winter	1,687.58	27.50	
P091 Cwt. feeder pigs bought in April	48.70	-40.00	
P095 Cwt. feeder pigs sold in August	39.94	40.00	
P096 Cwt. market hogs sold in winter	71.68	19.00	
P097 Cwt. market hogs sold in spring	190.38	19.00	
P098 Cwt. market hogs sold in summer	373.94	19.00	
P099 Cwt. market hogs sold in fall	14.34	19.00	
P102 5 acre rotation of C-C-C-O-M on land I	40.00	-140.05	
P105 5 acre rotation of C-O-M-M-M on land II	10.00	-68.35	
P150 Choice steer calves long fed on pasture	150.00	-22.10	
P168 Sow and two litters farrowed in December-June	13.31	-90.70	
P169 Sow and two litters farrowed in February-August	4.34	-90.70	
P181 Feeder pigs started in February	86.54	-7.175	
P182 Feeder pigs started in April	150.00	-7.175	
P185 Feeder pigs started in October	32.58	-7.175	
P200 Real estate taxes	1,250.00	-1.00	
P201 Machinery depreciation	1,900.00	-1.00	
P202 Building depreciation	850.00	-1,00	

53

¥

Section 2 Activities not in the optimum plan	Income penalty per unit of activity if forced into plan	Net price from original model
P005 Hours winter labor hired P007 Hours summer labor hired P017 Summer livestock purchases P017 Summer livestock purchases P017 Summer livestock purchases P022 Fall cash receipts P036 Number of dairy cows P036 Number of dairy cows P037 Number of beef cows P037 Number of beef cows P035 Tons of corn bought P055 Bushels of corn bought P055 Tons of hay baled P055 Tons of hay baled P056 Tons of hay baled P056 Acres of cropland rented P056 Acres of rotated pasture acquired P056 Acres of rotated pasture rented P056 Acres of rotated pasture rented P057 Cwt. choice steer calf sold P071 Cwt. choice yearling steer sold in fall P073 Cwt. choice yearling steer sold in summer P074 Cwt. choice parting steer sold in summer P076 Cwt. choice hearling steer sold in Summer P076 Cwt. choice hearling steer sold in Summer P076 Cwt. choice hearling steer sold P078 Cwt. choice hearling steer sold P078 Cwt. choice hearling steer sold P078 Cwt. choice hearling steer sold P079 Cwt. choice hearling steer sold P070 Cwt. choice hearling steer sold	-3.74 -4.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	$\begin{array}{c} -1.50\\ -1.50\\ -0.07\\ -0.07\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -1.30\\ -0.95\\ -0.95\\ -0.95\\ -2.70\\$
PUSG CWT. LEEGET PIGS DOUGHT UCLODET	0.04	-40.00

4 . ç

Net price from original model 40.00 -40.00 40.00 40.00 -40.00 -40.00 -40.00 -124.00 -124.00 -125.90 -125.90 -125.90 -21.41 -21.41 -21.41 -21.651 -22.94	of activity if of activity if 2.48 0.00 1.91 0.61 2.52 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	ties not in the optimum plan t. feeder pigs sold October t. feeder pigs bought December t. feeder pigs bought February t. feeder pigs bought June t. feeder pigs boug
-7.175	1.57	der pigs started in June
-7.175	2.45	der pigs started in December
-22.94	0°00	ice heifer calves on grain and hay ration
-19.51	22.45	non yearling steers on silage, grain and hay rat:
-16.51	24.87	non yearling steers on grain and hay ration
-23.66	0.00	ce yearling steers on silage, grain and hay rati
-21.41	1.79	ce yearling steers on grain and hay ration
-27.94	0.34	ce steer calves on silage, grain and hay ration
-26.44	0.00	ce steer calves on grain and hay ration
-21.00	0.00	cow on pasture
-130.90	10.84	/ cow on silage, grain and hay ration
-125.90	0.00	y cow on grain and hay ration
-102.70	39.50	re rotation of C-C-O-M-M on land I
-98.70	16.68	re rotation of C-C-O-M on land I
-124.00	0.00	e rotation of C-SB-C-O-M on land I
-4,0,00	0.00	feeder pigs bought August
-40.00	0.00	feeder pigs bought June
40.00	2.52	feeder pigs sold April
40.00	0.61	feeder pigs sold February
-40.00	1.91	feeder pigs bought February
-40.00	0.00	feeder pigs bought December
40.00	2,48	feeder pigs sold October
Tanon Tanata	cea Turo Dian	ארבר דון רווב סל רדיוומיון לדמון
from	of activity if	
Net price	me benard her	

Section 3

mer operator labor available 1 operator labor available sh expenses sh expenses cxpenses expenses
purchases purchases rchases y I t transfer, bushel fer, tons bushel ransfer, hay equiv. tons transfer, hay equiv. tons fer, bushel t.

Section 3.

t . . 0 2010 1 44 Docker of a

40 , -Ť • 2.5.6

the optimum plan Marginal value product	r transfer. cwt. 28.89	r transfer, cwt. 25.68	ransfer, cwt. 27.00	isfer, cwt. 29.18	er, cwt. 29.83	ter, cwt. 25.50	ewt. 29.06	isfer, cwt. 27.50	tecember 42.52	ebruary 40.61	pril 42.52	une 42.52	ugust 40.00	october 42.48	inter 19.00	pring 19.00	unurer 19,00	all 19.00	-1,03	9.21	0.06	
Kestrictions that are limiting	R40 Choice vearling steer feede	R41 Common vearling steer feede	R42 Choice heifer calf feeder to	R43 Summer choice fed beef trans	R44 Fall choice fed beef transfo	R45 Spring good fed beef transf	R46 Choice fed heifer transfer,	R47 Winter choice fed beef tran	R50 Feeder pig transfer, cwt. D(R51 Feeder pig transfer, cwt. F	R52 Feeder pig transfer, cwt. A	R53 Feeder pig transfer, cwt. J	R54 Feeder pig transfer, cwt. A	R55 Feeder pig transfer, cwt. 00	R56 Market hog transfer, cwt. w	R57 Market hog transfer, cwt. s	R58 market hog transfer, cwt. su	R59 Market hog trasnfer, ewt. f	R67 Beef cow capacity, head	R68 Fed beef capacity, head	R84 Breeding stock investment	

ing price.

The shift to hog farrowing increased the labor requirements during the winter and summer periods, forcing out beef cows and reducing crop production. The marginal value product of both winter and summer labor was also increased. In turn, the higher price on feeder pigs made baling hay unprofitable. Therefore, some rotated pasture was rented out while the hay requirements were purchased.

Two enterprises remained the same from Situation A to Situation B. First, corn production still dominated the cropping system on all land managed in Situation B. Second, the maximum number of long fed choice steer calves were still fed.

After optimizing the case farm under the two sets of price expectations in Situations A and B, two additional problems were specified in which either beef or hog production was fixed, and other enterprises were optimized within the added restraint of either a beef or hog activity forced in at a specified level. These two situations were intended to test the feasibility and usefulness of the model was a device for partial optimization.

Situation C

Situation C was specified to maximize beef production under given facility constraints and to eliminate all hog production on the case farm. All resource and enterprise constraints for Situation C are specified in Table 11.

The livestock production constraints were specified by bounding the livestock accounting activities. Hired labor was not restricted to avoid

All constraints are the same as those listed 2005 Hours of winter labor hired 2006 Hours of spring labor hired 2007 Hours of summer labor hired	for Situation A e Level	<pre>ccept the following: Type No bounds No bounds No bounds No bounds </pre>
	0	
CUSO Number of dairy cows	0.0	Upper bound
2037 Number of beef cows	50.0	Fixed bound
2038 Number of cattle fed	150.0	Fixed bound
2039 Number of litters of pigs	0*0	Upper bound
2040 Number of hogs fed	0.0	Upper bound
056 Tons of hay sold		No bounds
2058 Acres of cropland rented	0.0	Upper bound
2061 Acres of rotated pasture acquired	0.0	Upper bound

A.

Table 11. Resource and facility constraints for Situation C

the possibility of an infeasibility or a result of the forced level of beef production. However, if hired labor and capital were both unrestricted, land rental had to be constrained to avoid an unbounded solution. Therefore, no opportunity to rent either crop or pasture land was provided. The results from Situation C are given in Table 12. Total computation time was 1.11 minutes.

In comparing the results of Situation C with Situation A, the net income is \$2,614 less, but the total capital requirement is only \$3,395 less. Very little summer labor and no winter is hired. About a third of the corn grain crop is sold, and some corn silage was harvested. All of the meadow was pastured rather than harvested for hay.

The restraints on hay and dairy production are shown in Section 2 to be costly under Situation C. Adding a dairy cow would have increased income by \$87.98. Similarly, adding a litter of pigs would have increased income by \$29.39. Section 3 repeats the same information and, in addition, indicates that adding another beef cow would have decreased income by \$28.26. Forcing in all 50 beef cows in Situation C was not profitable.

Even with the emphasis on beef production, beef feeding facilities have a higher marginal value in Situation C than they do in Situation A.

In summarizing the partial optimization problem in Situation C, the most important comparison with Situation A is that the total resources required in Situation C are nearly as great as those in Situation A, but the income is considerably less.

Table 12. Optimum solution to farm Situation C

Section 1

Activities in the optimum plan	Level of activity in plan	Net price from original model
2001 Nours winter onerator labor used	00 00	0.00
PO02 Hours spring operator labor used	650.00	0.00
PO03 Hours summer operator labor used	690.00	0.00
PO04 Hours fall operator labor used	520.00	0.00
POO6 Hours spring labor hired	316.48	-1.50
PO07 Hours summer labor hired	8.16	-1.50
P008 Hours fall labor hired	161.79	-1.50
P009 Total cash expense and livestock investment	51,389.82	0.00
P010 Winter cash expenditures	6,826.90	-0.07
Poll Spring cash expenditures	4,184.30	-0.07
P012 Summer cash expenditures	1,591.68	-0.07
PO13 Fall cash expenditures	4,257.68	-0.07
PO14 Breeding stock investment	14,733.78	-0.06
PO15 Winter livestock purchases	0.14	-0.07
P018 Fall livestock purchases	19,795.32	-0.07
Pol9 Winter cash receipts	1,984.82	0.00
PO20 Spring cash receipts	1,984.82	0.00
P023 Winter livestock receipts	25,708.22	0.00
P024 Spring livestock receipts	1.50	0.00
PO25 Summer livestock receipts	23,867.21	0.00
PO26 Fall livestock receipts	1,351.68	0.00
PO30 Acres of corn	130.00	0.00
PO32 Acres of oats	50.00	0.00

Section 1

Activities in the optimum plan	Level of activity in plan	Net price from original model	
P033 Acres of meadow	70.00	0.00	
PO37 Number of beef cows	50.00	0.00	
PO38 Number of cattle fed	150.00	0.00	
PO50 Bushels of corn sold	3,308.04	1.20	
PO52 Bushels of corn fed	6,599.42	0.00	
PO53 Tons of corn silage harvested	284.44	-0.95	
PO57 Tons of hay bought	209.82	-20.00	
PO63 Tons of meadow used as pasture	204.04	0.00	
PO70 Cwt. choice steer calf bought	272.90	-30.50	
P073 Cwt. choice yearling steer bought	424.88	-27.00	
P074 Cwt. choice yearling steer sold in summer	802.92	27.50	
PO75 Cwt. choice yearling steer long fed sold in winter	934.76	27.50	
P079 Cwt. choice heifer calf sold	50.00	27.00	
PO80 Cwt. choice fed heifer sold	70.02	25.50	
P102 5 acre rotation of C-C-C-O-M on land I	40.00	-140.05	
P105 5 acre rotation of C-O-M-M-M on land II	10.00	-68.35	
P140 Beef cow on pasture	50.00	-21.00	
P150 Choice steer calves long fed on pasture	83.09	-22.10	
P154 Choice yearling steers on silage, grain and hay	66.91	-23.66	
P200 Real estate taxes	1,250.00	-1.00	
P201 Machinery depreciation	1,900.00	-1.00	
P202 Building depreciation	850.00	-1.00	

0	4
5	-
0	2
1	1
¢	5
C	1
71	<u>ъ</u> .

a de	Income penalty per	Net price
Activities not in the optimum plan	unit of activity if forced into plan	rrom original model
P005 Hours winter labor hired	1.60	-1.50
PO16 Spring livestock purchases	0.07	-0.07
PO17 Summer livestock purchases	0.03	-0.07
PO21 Summer cash receipts	0.00	0,00
PO22 Fall cash receipts	0.00	0.00
PO31 Acres of soybeans	0.00	0.00
PO36 Number of dairy cows	-87.98	0.00
PO39 Number of litters of pigs	-29.39	0.00
PO40 Number of hogs fed	-5.03	0.00
PO51 Bushels of corn bought	0.19	-1.30
PO54 Bushels of soybeans sold	0.00	2.70
PO55 Tons of hay baled	7.57	-6.65
PO56 Tons of hay sold	3.40	18.00
PO58 Acres of cropland rented	-13.14	-20.00
PO60 Acres of rotated pasture rented out	34.95	15.00
PO61 Acres of rotated pasture acquired	-33.90	-15.00
PO62 Acres of permanent pasture rented out	15.65	6.65
P071 Cwt. choice steer calf sold	3.88	28.75
P072 Cwt. choice yearling steer sold in fall	0.00	27.50
P076 Cwt. common yearling steer bought	1.21	-24.00
P077 Cwt. good yearling steer sold	0.00	25.50
P078 Cwt. choice heifer calf bought	2.96	-28.00
PO84 Cwt. milk sold	0.00	4.50
PO86 Cwt. feeder pigs bought October	2.52	-36,00
PO87 Cwt. feeder pigs sold October	0.00	36.00
PO88 Cwt. feeder pigs bought December	0.00	-36.00
PO89 Cwt. feeder pigs bought February	1.80	-36.00
P090 Cwt. feeder pigs sold February	0.72	36.00

Section 2

Net price from original model	-36.00 36.00 -36.00 -36.00 19.00 19.00 19.00 -124.00 -124.00 -124.00 -124.00 -124.00 -125.90 -125.90 -125.90 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.94 -125.95 -125.94 -125.95 -
come penalty per it of activity if orced into plan	$\begin{array}{c} 0.00\\$
Activities not in the optimum plan for	 P091 Cwt. feeder pigs bought April P092 Cwt. feeder pigs bought June P093 Cwt. feeder pigs bought June P095 Cwt. feeder pigs bought August P095 Cwt. feeder pigs bought August P095 Cwt. market hogs sold August P096 Cwt. market hogs sold sumer P097 Cwt. market hogs sold sumer P098 Cwt. market hogs sold sumer P099 Cwt. market hogs sold sumer P099 Cwt. market hogs sold sumer P099 Cwt. market hogs sold sumer P095 Cwt. market hogs sold fall P101 5 acre rotation of C-Co-M on land I P103 4 acre rotation of C-Co-M on land I P103 5 acre rotation of C-Co-M on land I P103 5 acre rotation of C-Co-M on land I P103 5 acre rotation of C-Co-M on land I P103 5 acre rotation of S-Go-M-M on land I P103 5 acre rotation of C-Co-M on land I P103 5 acre rotation of C-Co-M on land I P103 5 acre rotation of C-Co-M on land I P103 6 note steer calves on grain and hay ration P153 Choice steer calves on grain and hay ration P155 Common yearling steers on grain and hay P155 Common yearling steers on grain and hay P155 Common yearling steers on grain and hay ration P168 Sow and two litters farrowed in Pecumber P168 Sow and two litters farrowed in February and August P168 Sow and two litters farrowed in February and Nugust P183 Feeder pigs started in August P183 Feeder pigs started in August P183 Feeder pigs started in August P185 Feeder pigs started in August P185 Feeder pigs started in August P185 Feeder pigs started in August

ŝ	-	5
,	t	j
	ē	ŝ
	E	5
	ê	3
1	-	ł
ĺ,	Ĺ	j
	c	ŝ
	Ċ	ŝ
1	Ċ	5
١	2	/
ζ	7	l
r	-	ł
	9	y
•	0	y i
	0	1
	0 00	1 + 1 + 1

¢	1	2
	5	1
	ς	2
•	-	4
1	Ļ	Ļ
	ζ	s
	Q	2
ζ	1	2

Restrictions that are limiting the plan

Marginal value product

Hours winter operator labor available Hours spring operator labor available Hours summer operator labor available Hours fall operator labor available Winter cash expenses Spring cash expenses Summer cash expenses Fall cash expenses Winter livestock purchases Fall livestock purchases Fall livestock purchases Acres land quality I	0.00 1.60 1.60 0.07 0.07 0.07 0.07
Hours spring operator labor available Hours summer operator labor available Hours fall operator labor available Winter cash expenses Spring cash expenses Summer cash expenses Fall cash expenses Winter livestock purchases Fall livestock purchases Fall livestock purchases Acres land quality I Acres land quality II	1.60 1.60 1.60 0.07 0.07 0.07 0.07
Hours summer operator labor available Hours fall operator labor available Winter cash expenses Spring cash expenses Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Fall livestock purchases Acres land quality I	1.60 1.60 0.07 0.07 0.07 0.07
Hours fall operator labor available Winter cash expenses Spring cash expenses Summer cash expenses Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I	1.60 0.07 0.07 0.07 0.07 0.07
Winter cash expenses Spring cash expenses Summer cash expenses Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I	0.07 0.07 0.07 0.07
Spring cash expenses Summer cash expenses Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I Acres land quality I	0.07 0.07 0.07 0.07
Summer cash expenses Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I	0.07 0.07 0.07
Fall cash expenses Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I Acres land quality II	0.07
Winter livestock purchases Summer livestock purchases Fall livestock purchases Acres land quality I Acres land quality II	0.07
Summer livestock purchases Fall livestock purchases Acres land quality I Acres land quality II	
Fall livestock purchases Acres land quality I Acres land quality II	0.04
Acres land quality I Acres land quality II	0.07
Acres land quality II	36.47
· · · · · · · · · · · · · · · · · · ·	32.61
Corn grain harvest transfer, bushel	1.20
Corn silage transfer, ton	8.35
Soybean transfer, bushel	2.70
Standing meadow transfer, hay equiv. ton	17.84
Hay transfer, ton	21.40
Permanent pasture transfer, hay equiv. ton	17.84
Feeding corn transfer, bushel	1.20
Milk transfer, cwt.	4.50
Choice steer calf feeder transfer, cwt.	32.64
Choice yearling steer feeder transfer, cwt.	28.89
Common yearling steer feeder transfer, cwt.	24.47

Section 3

Restrictions that are limiting the plan

Marginal value product

010			
R42 CI	noice heifer calf feeder transfer, cwt.	27.00	
R43 S1	ummer choice fed beef transfer, cwt.	27.50	
R44 Fa	all choice fed beef transfer, cwt.	27.50	
R45 S1	sting good fed beef transfer, cwt.	25.50	
R46 Cl	noice fed heifer transfer, cwt.	25.50	
R47 W:	inter choice fed beef transfer, cwt.	27.50	
R50 F(eeder pig transfer, cwt. December	38.52	
R51 F(eder pig transfer, cwt. February	36.72	
R52 F(eeder pig transfer, cwt. April	36.00	
R53 Fe	eder pig transfer, cwt. June	35.40	
R54 Fe	eeder pig transfer, cwt. August	37.46	
R55 Fe	eder pig transfer, cwt. October	36.00	
R56 Ma	irket hog transfer, cwt. winter	19.00	
R57 Ma	urket hog transfer, cwt. spring	19.00	
R58 Ma	irket hog transfer, cwt. summer	19.23	
R59 Ma	irket hog transfer, cwt. fall	19.00	
R66 Da	tiry cow capacity, head	87.98	
R67 Be	eef cow capacity, head	-28.26	
R68 Fe	ed beef capacity, head	24.08	
R76 Hc	og farrowing capacity, litters	29.39	
R77 Hc	og feeding capacity, head	5.03	
R84 B1	reeding stock investment	0.06	
C NC	it farm income	11,699.37	

Situation D

The last model, Situation D, was structured so as to maximize hog production within the facility constraints while eliminating beef feeding. A beef cow activity was provided in the model but was not forced into the solution. The resource and enterprise constraints are specified in Table 13.

To make the data changes from Situation C to Situation D, no data within the matrix were altered. Instead, a new bounds section was substituted at the end of the data deck. Eighteen cards were substituted to specify both the new bounds and those that were unchanged from Situation C.

The results from Situation D are reported in Table 14. Total computation time was 1.15 minutes.

The total resource demands for the plan which results from Situation D are generally less than those required in Situation C. Labor requirements are slightly less while some winter operator labor is unused. Total capital requirements are reduced from \$51,389.82 to \$35,527.85. Almost half of the capital requirement in Situation D arises from breeding stock investment.

Corn production again dominated the cropping system, and about onethird of the crop was sold. Even though the total number of hogs fed equaled the number farrowed, the optimum plan specified selling the pigs farrowed in February and June as feeder pigs rather than finishing them for sale as slaughter hogs. Additional feeder pigs were purchased in December to feed during a period when unused operator labor was available.

The marginal value products of the facility and/or enterprise con-

1.020
0
e
1
14
0
1.1
03
-
-
+
• end
10
01
5
2
0
44
1.00
0
1
-
1
•
100
1
11
10
92
-
0
9
0
in.
5
1.5
-
1
÷
lil
ili(
cilit
icili1
acilit
facilit
facilit
facilit
d facilit
nd facilit
und facilit
and facilit
and facilit
e and facilit
se and facilit
ce and facilit
rce and facilit
nrce and facilit
urce and facilit
ource and facilit
source and facilit
source and facilit
esource and facilit
Resource and facilit
Resource and facilit
Resource and facilit
Resource and facilit
. Resource and facilit
3. Resource and facilit
3. Resource and facilit
13. Resource and facilit
13. Resource and facilit
: 13. Resource and facilit
e 13. Resource and facilit
le 13. Resource and facilit
ole 13. Resource and facilit
ble 13. Resource and facilit
able 13. Resource and facilit
Table 13. Resource and facilit

Upper bound Upper bound Fixed bound Fixed bound Type 50.0 0.0 60.09 420.0 Level PO39 Number of litters of pigs PO38 Number of cattle fed PO37 Number of beef cows PO40 Number of hogs fed

All constraints are the same as those listed for Situation C except for the following:
Table 14. Optimum solution to farm Situation D

Section 1

Activ	ities	in the optimum plan	Level of activity in plan	Net price from original model	
P001	Hours	winter operator labor used	809.35	0.00	
P002	Hours	spring operator labor used	650.00	0.00	
P003	Hours	summer operator labor used	690.00	0.00	
P004	Hours	fall operator labor used	520.00	0.00	
P006	Hours	spring labor hired	244.29	-1.50	
P007	Hours	summer labor hired	3.15	-1.50	
P008	Hours	fall labor hired	8.66	-1.50	
P009	Total	cash expense and livestock investment	35,527.85	0.00	
P010	Winter	cash expenditures	5,225.49	-0.07	
P011	Spring	cash expenditures	4,798.91	-0.07	
P012	Summer	cash expenditures	2,538.08	-0.07	
P013	Fall c	ash expenditures	3,761.97	-0.07	
P014	Breedi	ng stock investment	17,043.40	-0.06	
P015	Winter	livestock purchases	2,160.00	-0.07	
P019	Winter	cash receipts	2,814.61	0.00	
P020	Spring	cash receipts	2,814.61	0.00	
P021	Summer	cash receipts	53.25	0.00	
P023	Winter	livestock receipts	12,544.95	0.00	
P024	Spring	livestock receipts	3,798.03	0.00	
P025	Summer	livestock receipts	5,792.88	0.00	
P026	Fall 1	ivestock receipts	5,507.28	0.00	
P030	Acres	of corn	130.00	0.00	
P032	Acres	of oats	50.00	0.00	
P033	Acres	of meadow	70.00	0.00	
P037	Number	of beef cows	50.00	0.00	
P039	Number	of litters of pigs	60.00	0.00	
P040	Number	of hogs fed	420.00	0.00	

Section 1 Activities in the optimum plan	Level of activity in plan	Net price from original model	
PO50 Bushels of corn sold PO52 Bushels of corn fed PO55 Tons of hay baled PO55 Tons of hay baled PO56 Tons of hay baled PO56 Tons of hay sold PO56 Tons of meadow used as pasture PO71 Cwt. choice steer calf sold PO79 Cwt. choice fed heifer sold PO79 Cwt. choice fed heifer sold PO88 Cwt. feeder pigs bought December PO88 Cwt. feeder pigs sold April PO88 Cwt. feeder pigs sold April PO95 Cwt. market hogs sold winter PO95 Cwt. market hogs sold spring PO95 Cwt. market hogs sold spring PO95 Cwt. market hogs sold spring PO96 Cwt. market hogs sold fall PO95 Cwt. market ho95 Cwt. market hogs sold fall PO95 Cwt	4,691.01 6,808.91 93.000 2.96 96.03 100.96 50.000 50.000 154.000 66.000 154.000 66.000 154.000 150.000 150.000 150.000 55.000 55.000 55.000 150.000 1000 1000000	1.20 0.00 -6.65 18.00 0.00 28.75 28.75 28.75 27.00 25.50 36.00 36.00 19.00 19.00 19.00 19.00 -140.05 -21.00 -90.70 -7.175 -7.175 -7.175 -7.175	
P201 Machinery depreciation P202 Building depreciation	1,900.00	-1.00	

1		
	-	
	1	
ŝ	9	
1	5	
1	Ξ.	
	2	
	ě.	
×,	11	

	Income penalty per	Net price from
Activities not in the optimum plan	forced into plan	original model
P005 Hours winter labor hired	1.60	-1.50
PO16 Spring livestock purchases	0.07	-0.07
PO17 Summer livestock purchases	0.07	-0.07
PO18 Fall livestock purchases	0.07	-0.07
PO22 Fall cash receipts	0.00	0.00
PO31 Acres of soybeans	0.02	0.00
PO36 Number of dairy cows	-125.12	0.00
PO38 Number of cattle fed	-59.90	0.00
PO51 Bushels of corn bought	0.19	-1.30
PO53 Tons of corn silage harvested	0.00	-0.95
PO54 Bushels of soybeans sold	0.00	2.70
PO57 Tons of hay bought	3.40	-20.00
PO58 Acres of cropland rented	0.64	-20.00
PO60 Acres of rotated pasture rented out	4.24	15.00
PO61 Acres of rotated pasture acquired	-3.19	-15.00
PO62 Acres of permanent pasture rented out	1.94	6.65
PO70 Cwt. choice steer calf bought	1.75	-30.50
PO72 Cwt. choice yearling steer sold in fall	1.78	27.50
PO73 Cwt. choice yearling steer bought	3.59	-27.00
PO74 Cwt. choice yearling steer sold in summer	0.00	27.50
PO75 Cwt. choice yearling steer long fed sold in winter	0.00	27.50
PO76 Cwt. common yearling steer bought	4.88	-24.00
PO77 Cwt. good yearling steer sold	0.00	25.50

1	0	1	
	c	4	
	ξ	5	
1	÷	ł	
	÷	ł	
	S	2	
è	7	5	

Section 2	ncome penalty per nit of activity if	Net price from
Activities not in the optimum plan	forced into plan	original model
PO78 Cwt. choice heifer calf bought	1.00	-28.00
PO84 Cwt. milk sold	0.00	4.50
PO86 Cwt. feeder pigs bought October	0.00	-36.00
PO87 Cwt. feeder pigs sold October	0.00	36.00
PO89 Cwt. feeder pigs bought February	0.51	-36.00
P090 Cwt. feeder pigs sold February	2.01	36.00
P091 Cwt. feeder pigs bought April	0.00	-36.00
P093 Cwt. feeder pigs bought June	0.60	-36.00
P094 Cwt. feeder pigs bought August	0.00	-36.00
P101 5 acre rotation of C-SB-C-O-M on land I	0.00	-124.00
P103 4 acre rotation of C-C-O-M on land I	12.24	-98.70
P104 5 acre rotation of C-C-O-M-M on land I	33.97	-102.70
P128 Dairy cow on grain and hay ration	0.00	-125.90
P129 Dairy cow on silage, grain and hay ration	0.00	-130.90
P150 Choice steer calves long fed on pasture	0.00	-22.10
P151 Choice steer calves on grain and hay ration	6.44	-26.44
P152 Choice steer calves on silage, grain and hay ration	0.00	-27.94
P153 Choice yearling steers on grain and hay ration	11.19	-21.41
P154 Choice yearling steers on silage, grain and hay ration	0.00	-23.66
P155 Common yearling steers on grain and hay ration	7.72	-16.51
P156 Common yearling steers on silage, grain and hay ration	0.00	-19.51
P157 Choice heifers on grain and hay ration	53.05	-22.94
P183 Feeder pigs started in June	0.00	-7.175
P184 Feeder pigs started in August	0.24	-7.175

Section 3.	
Restrictions that are limiting the plan	Marginal value product
<pre>R02 Hours spring operator labor available R03 Hours fall operator labor available R04 Hours fall operator labor available R13 Winter cash expenses R14 Spring cash expenses R15 Summer cash expenses R15 Summer cash expenses R17 Winter livestock purchases R17 Winter livestock purchases R17 Minter livestock purchases R21 Acres land quality II R22 Corn grain harvest transfer, bushel R33 Corn silage transfer, ton R31 Soybean transfer, bushel R33 Soybean transfer, bushel R34 pransfer, ton R35 Feeding meadow transfer, hay equiv. ton R35 Feeding corn transfer, bushel R36 Wilk transfer, ton R37 Milk transfer, cwt. R38 Milk transfer, cwt. R38 Milk transfer, cwt. R39 Choice steer calf feeder transfer, cwt. R40 Choice yearling steer feeder transfer, cwt. R41 Common yearling steer feeder transfer, cwt. R42 Choice heifer calf feeder transfer, cwt.</pre>	1.60 1.60 1.60 0.07 0.07 0.07 0.07 1.4.18 1.4.18 1.4.18 1.4.18 1.20 6.87 6.87 1.20 6.87 1.20 6.87 1.20 6.87 1.20 6.87 1.20 6.87 1.20 1.20 1.20 2.700 5.3.41 1.20 1.20 1.20 1.20 1.20 1.20 2.700 5.3.41 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2

Section 3

Restrictions that are limiting the plan

Marginal value product

29.28	25.50	25.50	27.50	38.52	38.01	36.00	35.40	36.00	36.00	19.00	19.00	19.00	19.00	125.12	11.69	59.90	31.24	4.52	0.06	10,774.30
44 Fall choice fed beef transfer, cwt.	+5 Spring good fed beef transfer, cwt.	6 Choice fed heifer transfer, cwt.	7 Winter choice fed beef transfer, cwt.	00 Feeder pig transfer, cwt. December	il Feeder pig transfer, cwt. February	2 Feeder pig transfer, cwt. April	3 Feeder pig transfer, cwt. June	4 Feeder pig transfer, cwt. August	5 Feeder pig transfer, cwt. October	6 Market hog transfer, cwt. winter	7 Market hog transfer, cwt. spring	8 Market hog transfer, cwt. summer	9 Market hog transfer, cwt. fall	6 Dairy cow capacity, head	7 Beef cow capacity, head	8 Fed beef capacity, head	6 Hogs farrowing capacity, litters	7 Hog feeding capacity, head	4 Breeding stock investment	Net farm income

straints indicate that all livestock enterprises are still profitable. Dairy cows have an especially high marginal value of \$125.12 per head. The beef feeding activity also shows a marginal income contribution of \$59.90 per head. It should be noted that the marginal value product of additional farrowing capacity is greater in Situation D than in Situation C, where no hogs were produced.

The increases in marginal income contributions are explained by the fact that in Situation C a considerable amount of rotated pasture was required to meet the needs of the beef animals. Producing additional pasture consuming livestock, including litters of pigs, would have forced some corn acres into rotated pasture. Additional pasture consuming livestock would be competing with corn production in Situation C but not in Situation D, where little pasture was needed.

Application of the Model

The four situations programmed illustrate several unique applications of a linear programming model. In terms of solving individual farm planning problems, the use of the partially optimized or even a completely budgeted problem can serve at least two purposes.

First, the present organization of enterprises for the farm under study can be approximated with the model to determine a resource use and income base with which to compare optimized solutions. The bounding of particular individual activities, as shown in all four situations presented, would accommodate such an approximation of a business organization.

To optimize the same set of resources would only require replacing the data cards that restrict the various activities. None of the production

coefficients within the data deck need be disturbed.

The second application of the partial optimization model would be in comparing alternative business organizations to either the optimum organization or the existing organization of the farm business. If the optimum organization indicates an unsatisfactory return to capital or some other resource, the farm planner may be able to specify some alternative organization in which net income is reduced only slightly while the use of resources with a low marginal productivity are cut back substantially.

The relative ease of changing resource or activity restraints makes the model useful for a variety of farm planning problems. In addition to its potential use as a farm planning tool for individual farm situations, the model has potential in the classroom or extension situation in which farm organization principles are taught. Students can test various plans evolved by methods such as budgeting or even informed guesses against optimum resource use.

The description of total capital requirements and cash flow could also assist the farm operator in determining what his credit needs would be in each of the production seasons. Such a description could assist in acquiring additional credit in short period of capital limitations if it could be shown that the productivity of the additional capital warranted the extension of additional credit.

The use of the marketing activities defined in terms of commonly used units, especially with livestock, can assist the planner in better defining the prices that must be paid or received to equate the profitability of alternative livestock activities. These marketing activities eliminate much

of the additional hand budgeting formerly required to interpret the shadow prices from a solution.

.

SHORTCOMINGS OF THE MODEL

Although the programming model illustrated in the previous chapter generally meets the original goals specified, there are several shortcomings that ought to be considered.

First, the capital used in each production period was charged a full year's interest, even though the capital may have been invested during only two or three periods. The original intent was to charge only the amount of interest due for the actual time the capital was required for each activity. However, to do so would have required capital profiles for each activity. Such an accounting system would have recorded the accrued amount of capital required in each activity for each season. Cash flow accounting would have been more difficult with the capital profile system, however. It was decided that an accounting of cash flow was more useful than the insights into the farm business provided by a more elaborate profile of capital needs. Because of the manner in which capital coefficients and capital supplying activities have been structured, however, the actual interest charge would be less than the cost of capital implied in the present model.

The second problem also involves the cash flow accounting system. Although the marketing activities for all commodities are defined in conventional marketing units and the net prices are easily changed, the accounting for the cash expenses and receipts for such activities is defined within the programming matrix. Therefore, when the net prices are changed, the cash expenses and receipts remain the same. The activity mix is optimized with altered net prices, but the expenses and receipts record

the original cost or sale price. The seasonal cash accounting activities become only approximations as the price expectations of the marketing activities deviate from those prices built into the cash accounting section of the matrix.

At this time, the only method visualized to deal with the cash accounting problem would be to add a computer program that would multiply the units of each marketing activity on the optimum solution times the net price of that activity. The product totals for each activity would then be added to the product totals of other marketing activities that occurred in the same season. These totals, in turn, would be the seasonal marketing receipts and expenses. Receipts and expenses computed in this manner would reflect variations in cash flow when variable price programming was used.

An additional problem encountered with the model was in the printed output. The income penalties for some activities not in the optimum plan were sometimes difficult to trace. Two examples are soybean and beef production.

Soybeans did not enter the solution in any of the four situations programmed. However, no income penalty for growing soybeans was printed for the crop rotation activity that included soybeans. Instead the income penalty was associated with marketing the crop. In this instance, the income penalty was easier to interpret than if it had been printed with the crop growing activity. Interpretation of the shadow prices for beef production was not as straightforward.

As an example, the printed output for Situation A showed that the maximum amount of beef cattle were fed. Section 2 listed the income penalties for the beef feeding activities that were not in the optimum plan. How-

ever, the only marginal value product associated with beef feeding given in Section 3 was for the total feeding capacity. No value was given to indicate which feeding activity would be the most profitable. The interpretation must be made that since a single feeding activity entered at the maximum level, that same activity would be the most profitable one to expand.

The conclusion is that, even though most of the desired information is given in the report, some additional interpretation may be necessary by someone who is familiar with linear programming techniques and interpretation of results.

Therefore, the printed output from each farm planning problem may not be satisfactory to send directly to a typical farm operator. It may always be necessary to include an additional written interpretation or to require a return visit by the planner to the farm being programmed.

CONCLUSIONS AND SUGGESTED MODIFICATIONS OF THE MODEL

Through the development of the demonstration model and presentation of several problem situations, it has been shown that a linear programming model can be constructed to 1) leave the basic input-output data undisturbed from one farm situation to another, 2) formulate activity prices in such a manner that price expectations can be easily altered, 3) provide a readily interpretable descriptive output report for each solution, and 4) allow for partial optimization or complete budgeting of a given farm situation. To make this model more applicable to a variety of farm situations, several additional steps need to be taken.

The model constructed for this project needs additional production alternatives. The present model allows for only five cropping activities, eight beef raising and/or feeding activities, two dairy activities, and eight hog raising and/or feeding activities. To more accurately define the alternatives for a variety of farm businesses, a greater number of crop and livestock activities are needed. Most additional production activities would not require additional marketing activities since the present marketing activities define a wide variety of alternatives.

Production activities are needed to define different levels of management and production methods. Three levels of management should be defined within each production method. The farm operator and/or the farm planner could identify the historic or potential management level for each activity. Allowing for differences in management ability among enterprises would more closely approximate a farm operator's ability. Few farmers have the

same management ability for all crop and livestock enterprises.

In addition to increasing the number of production activities based on management levels and production methods, activities describing economies or costs of volume could be added, especially for partial optimization problems. If minimum levels of production are specified, activities that define increasing or decreasing costs of production would assist in more accurately describing input-output relationships.

After the model has been enlarged to include a satisfactory number of production methods with their associated management levels and increasing or decreasing costs, the next step should be to store all of the inputoutput data within a computer system in such a manner that any or all activities could be called out of storage for use in a farm planning problem. Storing the data in computer accessory would alleviate the many problems and potential errors associated with handling a large number of data cards. Solving a farm planning problem with computer-stored activities would then require four steps.

First, the resource restrictions would need to be defined for each farm by listing the B-column row number for each non-zero resource constraint and its associated value. Such resources as seasonal operator labor, acres of each class of land and tons of permanent pasture would be defined in this manner.

Second, the activities to be used for a farm planning problem would need to be called out of storage by punching the number of each activity desired on a data card. All activities not listed would not be considered as alternatives in solving the problem. Reducing the number of possible activities in this manner rather than bounding all unnecessary activities

at zero level would both reduce computation time and provide an output report that considered only the relevant activities.

Third, the price expectations would need to be defined if they were different from those stored with the input-output data. A set of price expectations would be provided within the stored data, but if the farm planner and/or operator desired some changes, those price expectations would need to be specified by listing the activity number, the C-row, and the changed price.

Fourth, all facility constraints and minimum or maximum levels of production would need to be specified by bounding the necessary accounting activities. Upper bounds would need to be specified to define the physical capacity of livestock or crop facilities. Lower or fixed bounds would need to be specified for minimum or fixed levels of production for partial optimization problems. In some instances it would be desirable to specify minimum or fixed levels of production of a specific production activity rather than of the accounting activity. All bounding would be done as it is with the present model. The program should be designed so that upon completion of each farm planning problem, all resources, selected activities, specified prices, and bounds would be erased before a new problem was encountered. There would be no chance of carrying restrictions or price expectations from one problem to another. Instead, each problem would be handled independently of any other preceding or following it.

After a satisfactory method has been developed to store the inputoutput data and select activities from it, the next step would be to design information sheets for the farm operator or planner to specify the necessary information to solve a planning problem. The sheets should be designed

Table 15. Example of initial information sheets

First page

Resources Available

Hours of operator labor available from December 1 to April 15920.0Hours of operator labor available from April 15 to June 30650.0Hours of operator labor available from July 1 to September 30690.0Hours of operator labor available from October 1 to November 30520.0Acres of Class I land in farm200.0Etc.50.0

Activities to be considered from catalog

P001,	P002,	P003,	P004,	P005,	P006,	P007,
P008,	P012,	P013,	P014,	P015,	P016,	P017,
Etc.	1					(

Price Expectations (net at farm prices)

Sell corn, bushel	1.15
Buy corn, bushel	1.25
Sell soybeans, bushel	2.60
Winter sale price of 220# market hogs, cwt.	20.50
Spring sale price of 220# market hogs, cwt.	20.00
Purchase price 450# choice steer calf, cwt.	31.25
Sale price 1050-1125# choice fed steer, cwt.	27.75
Etc.	,

Production Limitations

Maximum	acres	of	corn	130.0	Minimum	acres	of	corn	80.0
Maximum	acres	of	soybeans	50.0	Minimum	acres	of	soybeans	20.0

					Seco	ond pag	e			
RHS										
	B B B B B	R01 R02 R03 R04 R21 R22								920.0 650.0 690.0 520.0 200.0 50.0
COLU	MNS									
P001 P008	, POO2 , PO12	, P003, , P013,	P004, P014,	P005, P015,	P006, P016,	P007, P017		×		
	P050 P051 P054 P096 P097 P070 P072		0000000							1.15 -1.25 2.60 20.50 20.00 31.25 27.75
BOUN	DS _									
UP UP		P030 P031		130 50	.0		LO LO		P030 P030	80.0 20.0

in such a manner that the operator or planner would answer specific printed questions relating to resource constraints, activity selection, price expectations, and minimum, fixed, or maximum levels of production. The answers printed in the blanks following the questions could be copied on a second page with carbon paper. The second sheet, listing additional necessary column and row identification numbers, could be detached and used as a guide for punching the data cards. Such a system would help eliminate much of the intermediate work usually needed to translate information gathered on the farm to data sheets before card punching is done. An example of the type of information sheet described above is shown in Table 15.

Before such data sheets could be used, however, a master catalog would need to be printed identifying all stored activities by number and name and defining all production coefficients. From this catalog, the farm operator and/or planner could choose those activities desired as possible alternatives. In addition, the stored set of price expectations would be listed so the operator could decide whether he wanted to define a different set or select the stored set. The master catalog would be printed in much the same format as the present "Suggested Costs and Returns for Use in Farm Budgeting" but, of course, would contain much more detailed information (24).

LITERATURE CITED

- Beneke, Raymond R. and Saupe, William E. Linear programming as a farm planning tool: an appraisal and prognosis. Presented at the IBM Agricultural Symposium, San Jose, California. February 27-March 3, 1966. International Business Machines Corp., Data Processing Division, White Plains, N.Y. 1966.
- Birowo, Achmad Tungzul. Use of linear programming for farm planning guidance. Unpublished M.S. thesis. Library, Iowa State University, Ames, Iowa, 1961.
- Bowlen, Bernard Joseph. Production planning of crops for Iowa farms using activity analysis and linear programming. Unpublished Ph.D. thesis. Library, Iowa State University, Ames, Iowa, 1954.
- Dorfman, Robert, Samuelson, Paul A., and Solow, Robert M. Linear programming and economic analysis. McGraw-Hill Book Co., Inc., New York, N.Y. 1958.
- 5. Farm business planning guide. University of Missouri Cooperative Extension Service Bul. FM-6500. 1965.
- Heady, Earl O. Commercialization of agriculture and linear programming plans for individual farms. Presented at the IBM Agricultural Symposium, Endicott, New York. February 5-7, 1962. International Business Machines Corp., Data Processing Division, White Plains, N.Y. 1962.
- Heady, Earl O. Simplified presentation and logical aspects of linear programming techniques. Jour. Farm Econ. 36:1035. 1954.
- Heady, Earl O. and Candler, Wilfred. Linear programming methods. Iowa State University Press, Ames, Iowa. 1958.
- 9. Heady, Earl O. and Loftsgard, Laurel D. Farm planning for maximum profits on the Cresco-Clyde soils in northeast Iowa. Iowa Agr. Expt. Sta. Res. Bul. 450. 1957.
- Heady, Earl O., Loftsgard, Laurel D., Paulsen, Arnold, and Duncan, E. R. Optimum farm plans for beginning farmers on Tama-Muscatine soils. Iowa Agr. Expt. Sta. Res. Bul. 440. 1956.
- 11. Howell, H. B. and Hill, Harold F. Custom rates paid by Iowa farmers. Iowa Farm Science 2:8. July, 1966.
- Huheey, Tom. The farmer-computer management team. The Farm Quarterly, Fall Forecast 21:72. 1966.

- International Business Machines Corporation. Mathematical programming system 360 (360A-Co-14x) linear programming-user's manual. 1966.
- James, Sydney C., editor. Midwest farm planning manual. Iowa State University Press, Ames, Iowa. 1965.
- King, Richard A. Some applications of activity analysis in agricultural economics. Jour. Farm Econ. 35:1054. 1953.
- Loftsgard, Laurel D. Linear programming of dynamic plans for an actual farm and household. Unpublished Ph.D. thesis. Library, Iowa State University, Ames, Iowa, 1958.
- Loftsgard, Laurel D., Heady, Earl O., and Howell, H. B. Programming procedures for farm and home planning under variable price, yield and capital quantities. Iowa Agr. Expt. Sta. Res. Bul. 487. 1960.
- Mackie, Arthur B., Heady, Earl O., and Howell, H. B. Optimum farm plans for beginning farmers on Clarion-Webster soils. Iowa Agr. Expt. Sta. Res. Bul. 449. 1957.
- McFarquhar, A. M. M. The practical use of linear programming in farm planning. The Farm Economist 9:472. 1961.
- Oschwald, W. R., Riecken, F. F., Dideriksen, R. I., Scholtes, W. H., and Schaller, F. W. Principal soils of Iowa. Iowa State University Cooperative Ext. Serv. Special Report No. 42. 1965.
- Rations for dairy cows and heifers. Iowa State University Cooperative Ext. Serv. Pamphlet 318. 1965.
- Smith, Wesley G. and Heady, Earl O. Use of a dynamic model in programming optimum conservation farm plans in Ida-Monona soils. Iowa Agr. Expt. Sta. Res. Bul. 475. 1960.
- Stewart, J. D. Farm operating capital as a constraint. The Farm Economist 9:463. 1961.
- Suggested costs and returns for use in farm budgeting. Iowa State University Cooperative Ext. Serv. Bul. FM-1186. 1966.

ACKNOWLEDGEMENTS

The assistance and encouragement received from Dr. Raymond Beneke is gratefully acknowledged. His patience and guidance were always appreciated.

The advice of Professors H. B. Howell and E. G. Stoneberg is also acknowledged. When several sample farms were programmed for use in the Extension Farm Management program, their suggestions proved to be invaluable in making the model more applicable.

Frequent discussions with fellow student Roger Selley concerning the defining of activities proved to be very helpful and saved considerable experimental time.

APPENDIX A

Description of the Monona-Ida-Hamburg Soil Association Area*

The Monona-Ida-Hamburg soil association area covers about 2,900 square miles or 5 percent of the state. It extends from Plymouth County on the north to Fremont County on the south. It is most extensive in Woodbury, Monona, Harrison and West Pottawattamie counties but also occurs in parts of seven additional counties.

The topography of the area is characterized by narrow, gently-sloping ridges and steep side slopes which gradually change to well-defined alluvial valleys. Deeply entrenched streams and gullies are common in the alluvial valleys. In the Missouri River bluff area, very steep upland side slopes have eroded to form small natural benches called catsteps.

Nearly all upland soils of the area formed from thick deposits of loess which covered the rolling glacial till plain. Till-derived soils such as Shelby and Adair occur but are monor. A few areas of Malvern, a soil developed from Loveland loess, also occur. Silty materials eroded from the uplands formed the parent materials of the stream valleys.

The native vegetation was primarily prairie, although some small trees and shrubs grew on some steep east and north-facing slopes.

Monona, Ida and Hamburg are the major upland soils. Napier and McPaul are two of the major soils of the stream valleys.

Monona are well-drained soils that occur on the gently sloping narrow

*Source: (20, pp. 55-58).

ridges and strongly sloping side slopes. Slopes of 5 to 14 percent are most common, but these soils do occur on slopes ranging from 1 to 30 percent. The surface layer is a very dark brown silt loam 8 to 14 inches thick. The surface layer is frequently partially or completely removed by erosion. The subsoil is a dark brown to brown silt loam. The substratum is silt loam loess which may be calcareous at depths of 30 to 100 inches.

Ida soils occur on narrow divides and steep side flanks on slopes of 6 to 30 percent. Slopes of 10 to 20 percent are common. They are calcareous throughout the profile and do not have B horizons. In uneroded areas, the surface layer is a very dark grayish-brown calcareous silt loam 6 to 10 inches thick. The substratum is yellowish-brown calcareous silt loam loess. In most cultivated areas, the surface layer has eroded away and the substratum is exposed.

Dow soils have surface layers which are similar to the Ida soils in color and texture but have calcareous olive gray silt loam substrata. They are monor soils in the area.

Hamburg soils occur on steep (30 to 60 percent) catstep slopes adjacent to the Missouri River bottomlands and along drainageways which outlet into the bottomland. They formed from thick, coarse loess with prairie the principal vegetation. They have a very thin calcareous, dark brown silt to silt loam surface layer over a substratum of calcareous, pale brown coarse silt loess.

Castana soils are forming from calcareous colluvial materials which washed or slumped down from the steep Hamburg and Ida soils. They occur on High upland footslopes primarily of 10 to 30 percent. They have very dark brown to very dark grayish-brown surface layers 20 to 24 inches thick that

are calcareous in the lower part. The substratum is a calcareous yellowishbrown silt loam.

Napier soils occur along upland drainageways and narrow streams and on footslopes. These well-drained soils occur on slopes of 1 to 10 percent. Napier soils have a very dark brown silt loam surface layer, 20 to 30 inches thick, and moderately permeable, dark brown silt loam subsoil and substratum. In some areas recent sediments have formed a layer up to 10 inches thick on the surface.

McPaul soils are forming from alluvial materials in stream valleys. They consist of 24 to 36 inches or more of light colored sediments over buried dark colored silty clay loam soils.

A moderately high percentage of this association is used for cultivated crops. The steep slopes, including the catsteps bordering the Missouri River valley and some of its main tributaries, are in permanent pasture. Some areas of shrubs and trees occur. Yields are low from both pasture and timber on these steep slopes.

The valleys, less steep side slopes and the ridges are usually cultivated. Some of the streams in the area have been straightened to permit cultivation of much of the valley land. Gullying is a serious problem throughout most of the association, as gullies enlarge rapidly and attain huge proportions. Nitrogen and phosphorous are commonly needed. Ida soils are especially deficient in available phosphorous. Lime is not generally needed since most of the soils are neutral or slightly acid. Gently sloping to sloping Monona soils are often acid and may need lime. The sloping soils of the area are very erosive and require terracing, contour listing and other soil conservation practices for adequate erosion control.

levels, and corn production potentials of major soil types and phases	g soil association area
, and corn production potenti	association area
e, fertility levels	na-Ida-Hamburg soil
. Land use	in Monor
Table 16	

Soil type Number and name	Pha Slope E	se rosion	Lime needs T/acre	Avera	<u>ge soil te</u> P	st ^b K	Maximum corn use with conservation practices	Corn yield otentia bu/acre	Land capability lclass and subclass
10 Monona silt 10000	2-5		0-3	Г	VL to L	M to H	Often	85	II e
10 Monona silt 10am	5-9	2	0-3	VL to L	VL to L	M to H	Occasionally	80	III e
10 Monona silt	9-14	б	0	٨٢	WL to L	M to H	Seldom	75	III e
l Ida silt	5-9	2	0 (ex)	L	٨٢	M to H	Occasionally	65	III e
loam 1 Ida silt	9-14	e	0 (ex)	VL to L	٨L	M to H	Seldom	60	III e
1 Ida silt	14-18	e	0 (ex)	VL	٨L	M to H	Seldom	55	IV e
2 Hamburg silt	30+	ю	0 (ex)	VL.	ΛΓ	Н	Never	1	VII e
3 Castana silt	14-18	Ч	0 (ex)	Γ	VL to L	M to H	Seldom	60	IV e
12 Napier silt	2-5	0	0-2	L to M	VL to L	M to H	Often	06	II e
70 McPaul silt loam	0-2	0	0	VL to L	L to M	Н	Often	86	I
^a Estimated r. rates recommended b	ange for on ISU	soils soil te	not lime est repor	d in past ts.	5 years.	Lime nee	ds indicated ar	e near	optimum

"Estimated average soil test values based in part on summary of over 350,000 samples tested at the ISU Soil Testing Laboratory.

^cOften=3 or more years out of 5; Occasionally=1 to 3 years out of 5; Seldom=not more than 1 year in 6; Never=permanent vegetation.

APPENDIX B

Allocation of Production Coefficients for Crop and Livestock Activities

Crop Activities Power and machine cost	Seed	Fertilizer and lime	Miscellaneous
Corn1acregrownandharvestedWinter\$ 2.00Spring5.80Summer1.45Fall7.10Total\$16.35	\$0.00 3.00 0.00 \$3.00	\$ 0.00 3.00 0.00 <u>9.00</u> a \$12.00	\$0.00 3.00 0.00 \$4.00
Soybeans 1 acre grown and harveste Winter \$ 2.00 Spring 5.10 Summer 6.20 Fall 513.30	d 3.00 53.00 \$3.00	\$ 0.00 6.00 \$ 6.00 \$ 6.00	\$0.00 3.00 9.00 \$3.00
Oats-Meadow 2 acres grown, oats ha Winter \$ 1.50 Spring 4.50 Summer 4.00 Fall 70tal \$11.00	rvested \$0.00 6.00 0.00 <u>\$6.00</u>	\$ 0.00 6.00 0.00 \$ 6.00 \$	\$0.00 1.00 1.00 <u>\$2.00</u>

\$3.00 additional fertilizer is added for each additional year land remains in corn production.

 b \$3.00 fertilizer is applied for each year land remains in meadow.

 $^{\rm c} \$1.00$ power and machine cost is added for pasture maintenance for each additional year in meadow.

Figure 1. Seasonal allocation of capital requirements for crop activities

	Power and machine cost	Seed	Fertilizer and lime	Míscellaneous	Labor
Corn silage Winter Spring Summer Fall Total	1 acre grown and harve \$ 2.00 5.80 1.45 <u>\$29.85</u>	ested ^a 3.00 0.00 \$3.00 \$3.00	\$ 0.00 3.00 0.00 \$18.00	\$0.00 3.00 1.00 \$4.00	0.0 2.6 7.3 <u>0.5</u> <u>10.4</u>
Hay baling Winter Spring Summer Fall Total	1 ton baled \$ 0.00 2.50 4.15 <u>0.00</u> \$ 6.65	\$0.00 0.00 \$0.00 \$0.00	\$ 0.00 0.00 \$ 0.00 \$ 0.00	\$0.00 0.00 0.00 \$0.00	0.0 1.2 <u>1.3</u> <u>2.5</u>

efficients used specify the difference in capital and labor requirements between harvesting for grain The coand harvesting for silage, using the conversion figure of 5.6 bushels of corn per ton of silage. ^aThe activity in the matrix is based on the requirements to harvest one ton of silage.

b Based on a custom hire charge of \$15.00 per acre, plus machinery costs on owned equipment.

^cBased on a custom hire charge of 11¢ per bale, plus machinery costs on owned equipment.

Figure 1 (Continued)

	Supplements	D1 CCULUS	In Contractor			LILACE LIAILEUUS
	and minerals	charge	medical expense	machine cost	and taxes	
Reaf cour	1 cost and calf v	at sod to manuf	neumona dtin ac	amona lana anima	nt ctool a	
Winter	\$ 2.00	\$1.00	16, *1.05 \$ 1.05	\$ 2.00	\$2.10	\$0.60
Spring	1.37	0.80	1.05	0.75	0.00	0.45
Summer	1.38	0.55	1.05	0.50	2.10	0.00
Fall	0.75	0.80	0.00	0.70	0.00	0.00
Total	\$ 5.50	\$3.15	\$ 3.15	\$ 3.95	\$4.20	\$1.05
Dairy cow	Grain and hay r	ation, 1 cow w	ith accompanying	replacement st	ock ^b	
Winter	\$18.45	\$3.40	\$ 6.70	\$19.90	\$3.20	\$2.35
Spring	5.40	1.80	3.70	7.00	1.80	1.30
Summer	4.60	2.30	4.45	11.95	2.10	1.60
Fall	8.05	1.50	3.00	9.00	1.40	1.05
Total	\$36.50	\$9.00	\$17.85	\$47.85	\$8.50	\$6.30
Dairy cow	Silage, grain a	nd hay ration.	1 cow with accom	apanying replac	tement stock ^b	
Winter	\$21.45	\$3.40	\$ 6.70	\$19.90	\$3.20	\$2.35
Spring	5.90	1.80	3.70	7.00	1.80	1.30
Summer	4.60	2.30	4.45	11.95	2.10	1.60
Fall	9.55	1.50	3.00	9.00	1.40	1.05
Total	\$41.50	\$9.00	\$17.85	\$47.85	\$8.50	\$6.30

1 1+ · hfr. = \$28.57, and 1/25 bull = \$16.00. Total = \$294.57.

^bBreeding stock investment for dairy cow = cow = \$350.00, 1/3 yearling hfr. = \$60.00, 1/5 bred hfr. = \$55.00, and 1/2 calf = \$25.00. Total = \$490.00.

Figure 2. Seasonal allocation of capital requirements for dairy and beef cow activities

Livestock Activi	ties Supplements and minerals	Veterinary and medical expense	Power and machine cost	Insurance and taxes	Miscellaneous
Choice steer cal	f nectured and 1	ong tarm fad			
Winter	s pastured and 1	00.05 telli 150	\$1.20	\$1.05	\$0.00
Spring	1.90	1.00	0.75	0.00	0.50
Summer	1.00	0.00	1.00	0.00	0.00
Fall	4.00	1.00	2.00	0.00	0.55
Total	\$10. 30	\$2.00	\$4.95	\$1.05	\$1.05
Choice steer cal.	f, grain and hay	or silage, grain an	nd hay ration		
Winter	\$ 5.10	\$1.10	\$2.20	\$1.30	\$1.05
Spring	2.50	0.70	1.00	0.00	0.00
Summer	2.90	0.50	1.00	1.30	0.00
Fall	1.50	0.80	0.75	0.00	0.00
Total	\$12.00	\$3.10	\$4.95	\$2.60	\$1.05
Choice vearling	steer, prain and	hav or silage. gra	in and hav ration		
Winter	\$ 5.50	\$0.70	\$2.60	\$1.60	\$0.50
Spring	2.00	0.40	1.35	0.00	0.00
Summer	0.00	0.00	0.00	0.00	0.00
Fall	1.50	1.00	1.00	1.00	0.55
Total	\$ 9.00	\$2.10	\$4.95	\$2.60	\$1.05
a					

"For silage, grain and hay ration, add \$0.75 to summer and fall supplement of grain and hay ration. No other change. ^bSilage ration coefficients same as grain ration coefficients, except for additional \$0.75 in winter and fall, \$0.50 in spring, and \$0.25 in summer for supplement and minerals.

Seasonal allocation of capital requirements for beef feeding activities Figure 3.

Livestock Activi	ties Supplements and minerals	Veterinary and medical expense	Power and machine costs	Insurance and taxes	Miscellaneous
Common yearling	steer, grain and	I hay or silage, gi	rain and hay ration	8	
Winter	\$3.50	\$1.05	\$2.50	\$1.30	\$0.00
Spring	0.00	0.00	0.00	0.00	0.00
Summer	0.00	0.00	0.00	0.00	0.00
Fall	1.75	1.05	1.45	1.30	1.05
Total	\$5.25	\$2.10	\$3.95	\$2.60	\$1.05
Heifer calf, gra	in and hay ratic	uc			
Winter	\$4.50	\$1.50	\$2.20	\$1.30	\$1.05
Spring	1.50	0.50	1.50	1.30	0.00
Summer	1.00	0.00	0.50	0.00	0.00
Fall	1.50	1.50	0.75	0.00	0.00
Total	\$8.50	\$3.50	\$4.95	\$2.60	\$ 1. 05
Ę					

⁴Silage ration coefficients same as grain ration coefficients except that \$1.00 additional fall supplements and \$2.00 additional winter supplements were used.

Figure 3 (Continued)

	Supplements and minerals	Breeding charge	Veterinary and medical expense	Power and machine cost	Insurance and taxes	Miscellaneous
N N	litters farrowed	in December	and June ^a . Pigs	carried to 40	lbs.	
	\$14.45	\$0.00	\$ 4.40	\$ 3.67	\$0.00	\$0.85
	21.30	1.60	3.25	6.35	1.05	0.00
	7.50	0.00	2.00	2.00	0.00	0.85
	14.35	1.55	0.85	4.68	0.00	0.00
	\$57.60	\$3.15	\$10.50	\$16.70	\$1.05	\$1.70
WO	litters farrowed	in February	and August ^a . Pig	is carried to 4	40 lbs.	
	\$22.20	\$0.00	\$ 4.85	\$ 6.35	\$1.05	\$0.85
	10.35	1.60	0.60	3.20	0.00	0.00
	18.45	0.00	4.65	5.15	0.00	0.85
	6.60	1.55	0.40	2.00	0.00	0.00
	\$57.60	\$3.15	\$10.50	\$16.70	\$1.05	\$1.70
60	started in October	r at 40 lbs.	and fed to market	. weight ^b		
	\$ 2.00		\$ 0.375	\$ 0.745	\$0.105	\$0.10
	0.00	,	0.00	0.00	0.00	0.00
	0.00	,	0.00	0.00	0.00	0.00
	2.50	ı	0.675	0.575	0.10	0.10
	\$ 4.50	ı	\$ 1.05	\$ 1.32	\$0.205	\$0.20

^aBreeding stock investment = sow = \$70.00, 1/30 boar = \$7.00. Total = \$77.00.

b Capital coefficients for feeder pig activities in other time periods were allocated from total capital requirement of \$7.175 per pig.

Figure 4. Seasonal allocation of capital requirements for hog activities

APPENDIX C

Name and Numerical Code of All Activities and Restraints in the Model

Activities for Demonstration Model

POO1 HOURS WINTER OPERATOR LABOR USED POO2 HOURS SPRING OPERATOR LABOR USED POO3 HOURS SUMMER OPERATOR LABOR USED

PO04 HOURS FALL OPERATOR LABOR USED

PO05 HOURS WINTER LABOR HIRED

POO6 HOURS SPRING LABOR HIRED

POO7 HOURS SUMMER LABOR HIRED

POO8 HOURS FALL LABOR HIRED

PO09 TOTAL CASH EXPENSE AND LIVESTOCK INVESTMENT

PO10 WINTER CASH EXPENDITURES

PO11 SPRING CASH EXPENDITURES

PO12 SUMMER CASH EXPENDITURES

PO13 FALL CASH EXPENDITURES

PO14 BREEDING STOCK INVESTMENT

PO15 WINTER LIVESTOCK PURCHASES

PO16 SPRING LIVESTOCK PURCHASES

PO17 SUMMER LIVESTOCK PURCHASES

PO18 FALL LIVESTOCK PURCHASES

PO19 WINTER CASH RECEIPTS

PO20 SPRING CASH RECEIPTS

PO21 SUMMER CASH RECEIPTS

PO22 FALL CASH RECEIPTS

PO23 WINTER LIVESTOCK RECEIPTS

PO24 SPRING LIVESTOCK RECEIPTS

PO25 SUMMER LIVESTOCK RECEIPTS

PO30 ACRES OF CORN

PO31 ACRES OF SOYBEANS

PO32 ACRES OF OATS

PO33 ACRES OF MEADOW

PO36 NUMBER OF DAIRY COWS

PO37 NUMBER OF BEEF COWS

PO38 NUMBER OF CATTLE FED

PO40 NUMBER OF HOGS FED

PO50 BUSHELS OF CORN SOLD

PO52 BUSHELS OF CORN FED

PO55 TONS OF HAY BALED

PO56 TONS OF HAY SOLD

PO57 TONS OF HAY BOUGHT

PO51 BUSHELS OF CORN BOUGHT

P053 TONS OF CORN SILAGE HARVESTED

PO54 BUSHELS OF SOYBEANS SOLD

PO58 ACRES OF CROPLAND RENTED

PO60 ACRES OF ROTATED PASTURE RENTED OUT

PO62 ACRES OF PERMANENT PASTURE RENTED OUT

PO61 ACRES OF ROTATED PASTURE ACQUIRED

PO63 TONS OF MEADOW USED AS PASTURE

PO70 CWT. CHOICE STEER CALF BOUGHT

PO71 CWT. CHOICE STEER CALF SOLD

PO39 NUMBER OF LITTERS OF PIGS

PO26 FALL LIVESTOCK RECEIPTS

- PO72 CWT. CHOICE YEARLING STEER SOLD IN FALL
- PO73 CWT. CHOICE YEARLING STEER BOUGHT
- P074 CWT. CHOICE YEARLING STEER SOLD IN SUMMER
- PO75 CWT. CHOICE YEARLING STEER LONG FED SOLD IN WINTER
- PO76 CWT. COMMON YEARLING STEER BOUGHT
- PO77 CWT. GOOD YEARLING STEER SOLD
- PO78 CWT. CHOICE HEIFER CALF BOUGHT
- PO79 CWT. CHOICE HEIFER CALF SOLD
- PO80 CWT. CHOICE FED HEIFER SOLD
- PO84 CWT. MILK SOLD
- PO86 CWT. FEEDER PIGS BOUGHT IN OCTOBER
- PO87 CWT. FEEDER PIGS SOLD IN OCTOBER
- PO88 CWT. FEEDER PIGS BOUGHT IN DECEMBER
- PO89 CWT. FEEDER PIGS BOUGHT IN FEBRUARY
- P090 CWT. FEEDER PIGS SOLD IN FEBRUARY
- PO91 CWT. FEEDER PIGS BOUGHT IN APRIL
- P092 CWT. FEEDER PIGS SOLD IN APRIL
- PO93 CWT. FEEDER PIGS BOUGHT IN JUNE
- P094 CWT. FEEDER PIGS BOUGHT IN AUGUST
- P095 CWT. FEEDER PIGS SOLD IN AUGUST
- P096 CWT. MARKET HOGS SOLD IN WINTER
- PO97 CWT. MARKET HOGS SOLD IN SPRING
- P098 CWT. MARKET HOGS SOLD IN SUMMER
- P099 CWT. MARKET HOGS SOLD IN FALL
- P101 5 ACRE ROTATION OF C-SB-C-O-M ON LAND I
- P102 5 ACRE ROTATION OF C-C-C-O-M ON LAND I
P103 4 ACRE ROTATION OF C-C-O-M ON LAND I P104 5 ACRE ROTATION OF C-C-O-M-M ON LAND I P105 5 ACRE ROTATION OF C-O-M-M-M ON LAND II P128 DAIRY COW ON GRAIN AND HAY RATION P129 DAIRY COW ON SILAGE, GRAIN AND HAY RATION P140 BEEF COW ON PASTURE P150 CHOICE STEER CALVES LONG FED ON PASTURE P151 CHOICE STEER CALVES ON GRAIN AND HAY RATION P152 CHOICE STEER CALVES ON SILAGE, GRAIN AND HAY RATION P153 CHOICE YEARLING STEERS ON GRAIN AND HAY RATION P154 CHOICE YEARLING STEERS ON SILAGE, GRAIN AND HAY RATION P155 COMMON YEARLING STEERS ON GRAIN AND HAY RATION P156 COMMON YEARLING STEERS ON SILAGE, GRAIN AND HAY RATION P157 CHOICE HEIFERS ON GRAIN AND HAY RATION P168 SOW AND TWO LITTERS FARROWED IN DECEMBER AND JUNE P169 SOW AND TWO LITTERS FARROWED IN FEBRUARY AND AUGUST P180 FEEDER PIGS STARTED IN DECEMBER P181 FEEDER PIGS STARTED IN FEBRUARY P182 FEEDER PIGS STARTED IN APRIL P183 FEEDER PIGS STARTED IN JUNE P184 FEEDER PIGS STARTED IN AUGUST P185 FEEDER PIGS STARTED IN OCTOBER P200 REAL ESTATE TAXES P201 MACHINERY DEPRECIATION P202 BUILDING DEPRECIATION

Rows for Demonstration Model

RO1 HOURS WINTER OPERATOR LABOR AVAILABLE RO2 HOURS SPRING OPERATOR LABOR AVAILABLE RO3 HOURS SUMMER OPERATOR LABOR AVAILABLE R04 HOURS FALL OPERATOR LABOR AVAILABLE R09 HOURS WINTER LABOR TR. R10 HOURS SPRING LABOR TR. R11 HOURS SUMMER LABOR TR. R12 HOURS FALL LABOR TR. R13 WINTER CASH EXPENSES **R14 SPRING CASH EXPENSES** R15 SUMMER CASH EXPENSES R16 FALL CASH EXPENSES R17 WINTER LIVESTOCK PURCHASES **R18 SPRING LIVESTOCK PURCHASES R19 SUMMER LIVESTOCK PURCHASES R20 FALL LIVESTOCK PURCHASES** R21 ACRES LAND QUALITY I R22 ACRES LAND QUALITY II R24 CORN ACRES **R25 SOYBEAN ACRES** R26 OAT ACRES R27 MEADOW ACRES R29 CORN BU. HARVEST TRANSFER R30 CORN SILAGE TR. TONS

R31 SOYBEAN TR. BU.

R32 MEADOW TR. HAY EQ. TONS

R33 HAY TR. TON

R34 PERMANENT PASTURE TR. TONS HAY EQUIV.

R35 FEED CORN TRANSFER BU.

R38 MILK TRANSFER CWT.

R39 CHOICE STEER CALF FEEDER TRANSFER CWT. R40 CHOICE YEARLING STEER FEEDER TRANSFER CWT. R41 COMMON YEARLING STEER FEEDER TRANSFER CWT. R42 CHOICE HEIFER CALF FEEDER TRANSFER CWT. R43 SUMMER CHOICE FED BEEF TRANSFER CWT. R44 FALL CHOICE FED BEEF TRANSFER CWT. R45 SPRING GOOD FED BEEF TRANSFER CWT. R46 CHOICE FED HEIFER TRANSFER CWT. R47 WINTER CHOICE FED BEEF TR. CWT. R50 FEEDER PIG TRANSFER CWT. DECEMBER R51 FEEDER PIG TRANSFER CWT. FEBRUARY R52 FEEDER PIG TRANSFER CWT. APRIL R53 FEEDER PIG TRANSFER CWT. JUNE R54 FEEDER PIG TRANSFER CWT. AUGUST R55 FEEDER PIG TRANSFER CWT. OCTOBER R56 MARKET HOG TRANSFER CWT. WINTER R57 MARKET HOG TRANSFER CWT. SPRING R58 MARKET HOG TRANSFER CWT. SUMMER R59 MARKET HOG TRANSFER CWT. FALL **R60 WINTER CASH RECEIPTS**

R61 SPRING CASH RECEIPTS

R62 SUMMER CASH RECEIPTS

R63 FALL CASH RECEIPTS

R66 DAIRY COW CAPACITY HEAD

R67 BEEF COW CAPACITY HEAD

R68 FED BEEF CAPACITY HEAD

R76 HOG FARROWING CAPACITY LITTERS

R77 HOG FEEDING CAPACITY HEAD

R80 WINTER LIVESTOCK SALES

R81 SPRING LIVESTOCK SALES

R82 SUMMER LIVESTOCK SALES

R83 FALL LIVESTOCK SALES

R84 BREEDING STOCK INVESTMENT

R85 CAPITAL RESOURCE ROW

APPENDIX D

Coefficients Used in Demonstration Model Listed by Activity and Restraint Number

	P001		C		0.0
	P001		RO1		1.000000
	P001		R09		-1.000000
	P002		C		0.0
	P002		RO2		1.000000
200	P002	÷	R10		-1.000000
	P003		C		0.0
	P003		803		1.000000
	P003		R11		-1.000000
	P004		0		0.0
	004		DAA		1 000000
	P004		R12		-1.000000
	P004		612		-1 500000
	P005		000		-1.000000
	P005		013		1.500000
	P005		615		-1 500000
	P006		DIA		-1.000000
	P006		RIU		-1.000000
	P006		K 14		1.500000
	P007		0.1.1		-1.500000
	P007		RII		-1.000000
	P007		KID C		1.500000
	P008		0.00		-1.500000
	P008	én m	RIZ		-1.000000
	P008		K16		1.500000
	P009		C		0.0
	P009		R 85		-1.000000
	P010		С		-0.070000
	P010	÷.	R13		-1.000000
	P010		R 85		1.000000
	P011		С		-0.070000
	P011		R14		-1.000000
	P011		R 85		1.000000
	P012		С		-0.070000
	PC12		R15		-1.000000
	P012		R85		1.000000
	P013		C		-0.070000
	P013		R16		-1.000000
	P013		R85		1.000000
	P014		С		-0.060000
	P014		R84		-1.000000
	P014		R85		1.000000
	P015		С		-0.070000
	P015		R17		-1.000000
	P015		R85		1.000000
	P016		С		-0.070000
	P016		R18		-1.000000
	P016		R 85		1.000000
	P017 .		С		-0.070000
	P017		R19		-1.000000
	P017		R85		1.000000
	P018		С		-0.070000

*

110

X

P018	
P018	
P019	
P019	
P020	
P020	
P021	
P021	
P022	
P022	
P023	
P023	
P024	
P024	
P025	
PC25	
P026	
P026	
P030	
P030	
P031	
P031	
P032	
P032	
P033	
P033	
P036	
P036	
P037	
P037	
P038	
P038	
P039	
PC39	
P040	
P040	
P050	
P050	
P050	
P050	
P051	
P051	
P051	
P052	
P052	
P052	
P053	
P053	
P053	
P053	

	_	1		0	o	0	0	0	0
		1	•	0	0	0	0	0	0
		G	•	0					
	-	1	•	0	0	0	0	0	0
		0	0	0	0	0	0	0	0
	7	1	•	0	U	U	0	0	0
	-	1		0	0	0	0	0	0
		0	•	0					
	-	1	٥	0	0	0	0	0	0
	_	0	•	0	0	0	0	0	0
		0	•	0	Ő	0	v	0	Q
	-	1		0	0	0	0	0	0
		0	•	0					
	-	1	•	0	0	0	0	0	0
	_	U	•	0	0	0	n	0	0
		0	•	0	č	v	U	0	0
	-	1	•	0	0	0	0	0	0
		0		0					
	-	1	•	0	0	0	0	0	0
	_	0	•	0	0	0	0	0	0
		0	•	õ	Ő	C	C	0	9
		1		0	0	0	0	C	0
·		0	•	0				131	
	-	1	•	0	0	C	0	0	0
	_	1	•	0	0	0	0	0	0
		ō	•	0	~	Ŭ	-	U	0
	-	1	•	0	0	0	0	0	0
		0		0					
	-	1	•	0	0	0	0	0	0
	_	1	•	0	0	0	0	0	0
		1	•	2	0	0	0	0	0
		1		0	0	0	0	0	0
		0	•	6	0	0	0	0	0
		0	٠	6	0	0	0	0	0
	-	1	•	2	90	9	90	y o	9
	_	1		0	0	0	0	0	0
		õ		0			Ĭ	Ĭ	
		1	•	0	0	0	0	0	0
	-	1	•	C	0	0	C	0	0
	-	0	•	9	50	0	0	0	0
	_	00	۰	2	50	0	00	00	0
		0	•	0	4 5	0	00	0	0
		~	۴	1	1	-	-	-	~

111

R 20

R 85 C R 60 C R 61

C R 62 C R 63 C

R 80 C

R81 C R82 C R83

С R 2 4 C

R25

R26 С

R 27 C

R 66 C R 67

R 6 8 C

R76 C R77 C

R 61 C

R14

R29 C R 29

R35

R11 R12 R16

С

С

С

P053 R29 5.599999 P053 R30 -1.000000 P054 C 2.700000 P054 R31 1.000000 P055 R 1.200000 P055 R10 1.260000 P055 R11 1.299999 P055 R14 2.500000 P055 R33 -1.000000 P055 R33 -1.000000 P056 R33 1.000000 P056 R42 18.00000 P056 R42 18.000000 P057 C -20.000000 P057 R13 20.00000 P058 R21 -0.500000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 -2.799999 P060 R32 -2.799999 P061 C -15.000000						
P053 R3C -1.00000 P054 C 2.700000 P054 R61 2.700000 P055 C -6.65000 P055 R10 1.200000 P055 R11 1.299999 P055 R14 2.500000 P055 R15 4.150000 P055 R32 1.000000 P056 C 18.00000 P056 R33 -1.000000 P057 C -20.000000 P057 R13 20.00000 P057 R33 -1.000000 P057 R33 -1.000000 P057 R13 20.000000 P057 R33 -1.000000 P058 R21 -0.500000 P058 R21 -0.500000 P058 R22 -0.500000 P060 R32 -2.799999 P061 C -15.000000 P061 R15 15.000000 P062 C 6.650000 P063 R32 1.0000	P053		R 29			5.599999
P054 C 2.700000 P054 R31 1.000000 P055 C -6.650000 P055 R10 1.200000 P055 R11 1.299999 P055 R14 2.500000 P055 R14 2.500000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.000000 P057 C -20.000000 P057 R13 20.00000 P058 R16 20.00000 P058 R16 20.00000 P058 R16 20.00000 P058 R16 20.00000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 -2.799999 P060 R32 -2.799999 P061 R15 15.00000 P062 C 6.650000 P063 R32 10.00000	P053		R 30			-1.000000
P054 R31 1.000000 P055 C -6.650000 P055 R10 1.260000 P055 R11 1.299999 P055 R14 2.500000 P055 R15 4.150000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.00000 P057 R -20.00000 P057 R13 20.00000 P057 R13 20.00000 P058 R16 20.00000 P058 R16 20.00000 P058 R12 -0.500000 P058 R12 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 2.799999 P061 C -15.000000 P061 R15 15.000000 P062 C 6.650000 P063 R32 1.000000 P070 R20 30.50000	P054		C			2.700000
P054 R61 2.700000 P055 C -6.650000 P055 R10 1.260000 P055 R11 1.299999 P055 R14 2.500000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.00000 P056 R62 18.00000 P056 R62 18.00000 P057 C -20.00000 P057 R13 20.00000 P057 R33 -1.00000 P058 R16 2C.000000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 2.799999 P061 R32 -2.799999 P062 C 6.650000 P063 R34 -1.000000 P070 R20 30.500000 <	P054		R31			1.000000
P055 C -6.650000 P055 R10 1.260000 P055 R11 1.299999 P055 R15 4.150000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.00000 P056 R33 1.000000 P056 R33 1.000000 P056 R42 18.000000 P057 C -20.000000 P057 R13 20.00000 P058 C -20.00000 P058 R16 20.00000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 2.799999 P061 C -15.000000 P061 R32 -2.799999 P062 C 6.650000 P063 R32 1.000000 P070 R20 30.500000 P070 R39 -1.0000	P054	8	R 61			2.700000
P055 R10 1.200000 P055 R11 1.299999 P055 R14 2.500000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.000000 P056 R33 1.000000 P056 R33 1.000000 P057 C -20.000000 P057 R13 20.000000 P058 C -20.000000 P058 R16 20.00000 P058 R21 -0.500000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 -2.799999 P061 C -15.000000 P061 R15 15.000000 P062 C 6.650000 P063 R32 -2.799999 P063 R32 -1.000000 P070 R20 30.500000 P071 R39 <td< td=""><td>P055</td><td></td><td>C</td><td></td><td></td><td>-6.650000</td></td<>	P055		C			-6.650000
P055 R11 1.299999 P055 R14 2.500000 P055 R32 1.000000 P055 R33 -1.000000 P056 C 18.000000 P056 R33 1.000000 P056 R33 1.000000 P057 C -20.000000 P057 R13 20.000000 P057 R33 -1.000000 P058 R21 -0.500000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R62 15.000000 P061 C -15.000000 P062 C 6.650000 P062 R62 6.650000 P063 R34 -1.000000 P070 R20 30.500000 P071 R39 1.000000 P071 R33 <td< td=""><td>P055</td><td></td><td>R10</td><td></td><td></td><td>1.200000</td></td<>	P055		R10			1.200000
P055 R14 2.500000 P055 R15 4.150000 P055 R32 1.000000 P056 C 18.000000 P056 R33 1.000000 P056 R33 1.000000 P056 R42 18.000000 P057 C -20.000000 P057 R13 20.000000 P058 C -20.000000 P058 R16 20.000000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 -2.799999 P061 R15 15.000000 P061 R32 -2.799999 P062 C 6.650000 P063 C 0.0 P063 C 0.0 P070 R20 30.500000 P071 R39 1.0000000 <td>P055</td> <td></td> <td>R11</td> <td></td> <td></td> <td>1.299999</td>	P055		R11			1.299999
P055 R15 4.150000 P055 R32 1.000000 P056 C 18.000000 P056 R33 1.000000 P056 R42 18.000000 P056 R62 18.000000 P057 C -20.000000 P057 R13 20.000000 P057 R33 -1.000000 P058 R16 20.000000 P058 R21 -0.500000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R32 -2.799999 P061 C -15.000000 P061 R15 15.000000 P062 C 6.650000 P063 R34 1.250000 P070 R20 30.500000 P071 R39 1.000000 P071 R39 1.000000 P071 R39 <t< td=""><td>P055</td><td></td><td>R14</td><td></td><td></td><td>2.500000</td></t<>	P055		R14			2.500000
P055 R32 1.000000 P056 C 18.00000 P056 R33 1.00000 P056 R33 1.00000 P056 R33 1.00000 P057 C -20.00000 P057 R13 20.00000 P057 R33 -1.00000 P058 C -20.000000 P058 R16 20.00000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P050 R32 2.799999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P062 C 6.650000 P063 R32 1.000000 P063 R32 1.000000 P070 R20 30.50000 P071 C 28.750000 P071 R39 1.000000 P072 R44 1.000000	P055		R15			4.150000
P055 R33 -1.000000 P056 C 18.000000 P056 R33 1.000000 P057 C -20.000000 P057 R13 20.000000 P057 R33 -1.000000 P057 R33 -1.000000 P057 R33 -1.000000 P058 R16 20.000000 P058 R21 -0.500000 P058 R22 -0.500000 P058 R22 -0.500000 P056 C 15.000000 P060 R32 2.799999 P060 R32 -2.799999 P061 C -15.000000 P061 R15 15.000000 P062 C 6.650000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 1.000000 P071 R39 1.000000 P071 R83 27.500000 P072 R44 <t< td=""><td>P055</td><td></td><td>R32</td><td></td><td></td><td>1.000000</td></t<>	P055		R32			1.000000
P056 C 18.00000 P056 R33 1.00000 P056 R62 18.00000 P057 C -20.00000 P057 R13 20.00000 P057 R33 -1.00000 P058 C -20.00000 P058 R16 20.00000 P058 R21 -0.50000 P058 R22 -0.50000 P058 R22 -0.50000 P058 R22 -0.500000 P060 C 15.000000 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P063 R32 1.250000 P063 R32 1.000000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 -1.000000 P071 R83 27.500000 P072 R44 1.000000 P073 C -27.000000 <td>P055</td> <td></td> <td>R33</td> <td></td> <td></td> <td>-1.000000</td>	P055		R33			-1.000000
P056 R33 1.000000 P057 C -20.00000 P057 R13 20.00000 P057 R33 -1.00000 P058 C -20.00000 P058 R16 20.00000 P058 R21 -0.50000 P058 R22 -0.50000 P058 R22 -0.50000 P056 C 15.00000 P060 R32 2.79999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P061 R15 15.00000 P062 C 6.650000 P063 R32 1.250000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P072 R44 1.000000 P073 C -27.000000 P073 C 27.500000	P056		C			18.000000
P056 R62 18.00000 P057 C -20.00000 P057 R13 20.00000 P057 R33 -1.00000 P058 C -20.00000 P058 R16 20.00000 P058 R21 -0.50000 P058 R22 -0.50000 P056 C 15.00000 P056 C 15.00000 P060 R32 2.79999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.79999 P062 C 6.650000 P063 R32 -2.79999 P064 R52 1.250000 P063 R34 1.250000 P063 R32 1.000000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 1.000000 P072 R44 1.000000	P056		R 33			1.000000
P057 C -20.00000 P057 R13 20.00000 P058 C -20.00000 P058 R16 20.00000 P058 R21 -0.50000 P058 R21 -0.50000 P058 R22 -0.50000 P050 C 15.00000 P060 R32 2.799999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.65000 P063 R32 -2.799999 P063 C 0.00000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 1.000000 P071 R39 1.000000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P074 R43 1.000000	P056		R62		X 85	18.000000
P057 R13 20.000000 P057 R33 -1.000000 P058 C -20.000000 P058 R16 2C.0C0000 P058 R21 -0.500000 P058 R22 -0.500000 P056 C 15.00000 P060 R32 2.799999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P062 C 6.650000 P063 R32 -2.799999 P062 C 6.650000 P063 R32 -2.799999 P063 R32 -2.799999 P064 R32 -2.799999 P065 C 0.0 P0662 R62 6.650000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 -1.000000 P072 R44 1.000000 P073 C -27.000000<	P057		C			-20.000000
P057 R33 -1.000000 P058 C -20.000000 P058 R16 2C.00000 P058 R21 -0.500000 P058 R22 -0.500000 P056 C 15.00000 P060 R32 2.799999 P060 R32 2.799999 P061 C -15.00000 P061 R15 15.00000 P062 C 6.650000 P062 R62 6.650000 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P072 C 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000	P057		R13			20.000000
P058 C -20.000000 P058 R16 2C.0C0000 P058 R21 -0.500000 P058 R22 -0.500000 P060 C 15.000000 P061 C -15.000000 P061 C -15.000000 P061 R15 15.000000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P063 R32 1.000000 P063 C 0.0 P063 R32 1.000000 P063 R34 -1.000000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 </td <td>P057</td> <td></td> <td>R33</td> <td></td> <td></td> <td>-1.000000</td>	P057		R33			-1.000000
P058 R16 2C.0C00C0 P058 R21 -0.500000 P056 C 15.0C0000 P060 R32 2.799999 P060 R62 15.0C0000 P061 C -15.000000 P061 C -15.000000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P063 R32 1.000000 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R39 -1.000000 P071 R39 1.000000 P071 R83 28.750000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P074 R43 1.000000 P074 R43 1.000000	P058		С			-20.000000
P058 R21 -0.500000 P058 R22 -0.500000 P060 R32 2.799999 P060 R62 15.000000 P061 C -15.00000 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.00000 P063 R34 -1.00000 P070 R20 30.500000 P070 R39 -1.00000 P071 R39 1.000000 P071 R39 1.000000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P074 R43 1.000000 P074 R43 1.000000 <t< td=""><td>P058</td><td></td><td>R16</td><td></td><td></td><td>20.000000</td></t<>	P058		R16			20.000000
P058 R22 -0.500000 P060 C 15.00000 P060 R32 2.799999 P060 R62 15.00000 P061 C -15.00000 P061 R15 15.000000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P063 R32 1.000000 P063 R32 1.000000 P063 R32 1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P071 R83 28.750000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000	P058		R 2 1		- x1	-0.500000
P066 C 15.00000 P060 R32 2.799999 P060 R62 15.00000 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 R32 1.000000 P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P071 R39 1.000000 P072 C 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P058		R22			-0.500000
P060 R32 2.799999 P060 R62 15.00000 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 R32 1.000000 P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R39 1.000000 P072 C 27.50000 P073 C -27.00000 P073 R20 27.00000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P060		C			15,000000
P060 R62 15.00000 P061 C -15.00000 P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 R34 1.250000 P063 R32 1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P072 C 27.500000 P071 R83 28.750000 P072 R44 1.000000 P073 R20 27.00000 P073 R20 27.00000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P060		R 32			2.799999
P061 C -15.000000 P061 R15 15.000000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 R39 -1.000000 P071 R83 28.750000 P072 C 27.500000 P073 C -27.00000 P073 R20 27.00000 P073 R44 1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P060		R62			15.000000
P061 R15 15.00000 P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P072 C 27.500000 P073 C -27.000000 P073 R20 27.00000 P073 R20 27.00000 P073 R44 1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P061		С		18.1	-15.000000
P061 R32 -2.799999 P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 C 0.0 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R20 30.500000 P071 C 28.750000 P071 R39 1.000000 P072 C 27.500000 P073 C -27.000000 P073 R44 1.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P061		R15	1		15.000000
P062 C 6.650000 P062 R34 1.250000 P062 R62 6.650000 P063 C 0.0 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P073 C -27.000000 P073 R20 27.00000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P061		R32			-2.799999
P062 R34 1.250000 P062 R62 6.650000 P063 C 0.0 P063 R32 1.000000 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 R44 1.000000 P073 C -27.00000 P073 R20 27.00000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P062		C			6.650000
P062 R62 6.650000 P063 C 0.0 P063 R32 1.000000 P063 R34 -1.000000 P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P062		R34			1.250000
P063 C 0.0 P063 R32 1.000000 P063 R34 -1.00000 P070 C -30.50000 P070 R20 30.50000 P070 R39 -1.00000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P062		R62			6.650000
P063 R32 1.000000 P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P073 C -27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	P063		C			0.0
P063 R34 -1.000000 P070 C -30.500000 P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	P063		 R32			1.000000
PC70 C -30.500000 P070 R20 30.500000 P070 R39 -1.000000 PC71 C 28.750000 P071 R39 1.000000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P073 C -27.000000 P073 R20 27.00000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	P063		R34			-1.000000
P070 R20 30.500000 P070 R39 -1.000000 P071 C 28.750000 P071 R39 1.000000 P071 R39 1.000000 P072 C 27.500000 P072 R44 1.000000 P072 R83 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	PC70		C			-30.500000
P070 R39 -1.00000 P071 C 28.750000 P071 R39 1.000000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P072 R83 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 R43 1.000000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	P070		R20			30,500000
PC71 C 28.750000 P071 R39 1.000000 P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P072 R44 1.000000 P073 C -27.00000 P073 R20 27.00000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	P070		R 39			-1.000000
P071 R39 1.000000 P071 R83 28.750000 P072 C 27.50000 P072 R44 1.000000 P072 R44 1.000000 P072 R44 1.000000 P073 C -27.00000 P073 R20 27.00000 P073 R40 -1.00000 P074 C 27.500000 P074 R43 1.000000 P074 R43 1.000000 P075 C 27.500000	PC71		С			28.750000
P071 R83 28.750000 P072 C 27.500000 P072 R44 1.000000 P072 R83 27.500000 P072 R83 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R82 27.500000 P075 C 27.500000	P071		R39			1.000000
P072 C 27.500000 P072 R44 1.000000 P072 R83 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 27.500000 P075 C 27.500000 P075 R47 1.000000	P071		R 83			28.750000
P072 R44 1.00000 P072 R83 27.50000 P073 C -27.00000 P073 R20 27.00000 P073 R40 -1.00000 P074 C 27.50000 P074 R43 1.00000 P074 R82 27.50000 P075 C 27.50000	P072		C			27.500000
P072 R83 27.500000 P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R82 27.500000 P075 C 27.500000 P075 R47 1.000000	P072		R44			1.000000
P073 C -27.000000 P073 R20 27.000000 P073 R40 -1.000000 P074 C 27.500000 P074 R43 1.000000 P074 R43 27.500000 P074 R43 1.000000 P075 C 27.500000 P075 R47 1.000000	P072		R83			27.500000
P073 R20 27.00000 P073 R40 -1.00000 P074 C 27.50000 P074 R43 1.00000 P074 R43 27.50000 P074 R43 1.00000 P075 C 27.50000 P075 R47 1.00000	P073		C			-27.000000
P073 R40 -1.00000 P074 C 27.50000 P074 R43 1.000000 P074 R43 27.50000 P074 R82 27.50000 P075 C 27.50000 P075 R47 1.00000	P073		R20			27.000000
P074 C 27.50000 P074 R43 1.000000 P074 R82 27.500000 P075 C 27.500000 P075 R47 1.000000	P073		R40			-1.000000
P074 R43 1.000000 P074 R82 27.50000 P075 C 27.50000 P075 R47 1.000000	P074		C			27.500000
P074 R82 27.50000 P075 C 27.50000 P075 R47 1.000000	P074		R43			1.000000
P075 C 27.500000 P075 R47 1.000000	P074	14	R82			27.500000
P075 R47 1.000000	P075		С			27.500000
	P075		R47			1.000000

.

.

	DOTE		000	27 500000
	PU12		ROU	21.000000
	P076		0.20	-24.000000
	PU16		RZU	24.000000
	P076.		R41	-1.000000
	P077		C	25.500000
	P077		R45	1.000000
	P077		R81	25.500000
	P078		С	-28.000000
	P078		R20	28.000000
	P078		R42	-1.000000
	P079		C	27.000000
	P079		R42	1.000000
	P079		R83	27.000000
	P080		С	25.500000
	P080		R46	1.000000
	P080		R 82	25,500000
	POSE		C	4.500000
	P084		R 38	1,000000
	PORA		R 80	1.690000
	004		DQ1	0.040000
	0004		001	1 120000
	0004		DRS	0.750000
	0004		05	-34 00000
	P000		0 20	- 36.000000
	P000		NZU DEC	1.000000
	0007		600	-1.000000
	PU87		C	30.000000
	P087		K D D D	1.000000
(e-1	P087		K83	36.000000
	P088		0	-36.000000
	P088		RII	36.000000
	P088		R 50	-1.000000
	P089		С	-36.000000
	P089		R17	36.000000
	P089		R51	-1.000000
	P090		С	36.000000
	P090		R51	1.000000
	P090		R 80	36.000000
	P091		С	-36.000000
	P091		R18	36.000000
	P091		R 52	-1.000000
	P092		С	36.000000
	P092		R 52	1.000000
	P092		R81	36.000000
	P093		С	-36.000000
3 3 (A)()	P093		R18	36.000000
	P093		R 53	-1.000000
	P094		C	-36,000000
	P094		R19	36-000000
	P094	•	R54	-1.000000
	POQS		C	36 000000
	1095		6	30.000000

.

.

 $\overline{\mathbf{v}}$

P095		R54		1.000000
P095		R82		36.000000
P096		C		19.000000
P096		R56		1.000000
PAGA	100	R 80		19.000000
PAC7		5		19.000000
DOG7		857		1.000000
P007		D B 1		19.000000
0000		C		19 000000
P090		050		1 000000
P090		600		10.000000
P098		ROZ		10.000000
P099		0.50		19.000000
P099		K 59		1.000000
P099		R83		19.000000
P101		С		-124.000000
P101		R10		9.000000
P101		R11		6.200000
P101		R12		7.299999
P101		R13		7.500000
P101		R14		64.199997
P101		R15		7.900000
P101		R16		44.399994
P101		R21		5.000000
P101		R24		2.000000
P101		R25		1.000000
P101		R26		1.000000
P101		R 27		1.000000
P101		R 29		-185.000000
P101		R 31		-28,000000
P101		R32		-3.000000
P102		r		-140.049988
P102		RIO		10 799999
P102		R 11		5 000000
P102		P12		8 500000
P102		013		7 500000
P102		014		41 200000
0102		016		01.077774
P102		K19		3.349999 (1.300000
P102		K 10		51.299988
P102		KZ1	-	5.000000
P102		R 24		3.000000
P102		R26		1.000000
P102		K27		1.000000
P102		R29		-265.000000
P102		R 32		-3.000000
P103		С		-98.699997
P103		R10		7.700000
P103		R11		4.900000
P103.		R12		5.900000
P103		R13		5.500000
P103		R14		47.099991

,

0102	015		7 000000
P103	KID		7.900000
P103	R16		38.199997
P103	R21		4.000000
P103.	R24		2.000000
P103	R26		1.000000
0103	D 27		1 000000
F100	0.20		105 000000
PIUS	RZ9		-185.000000
P103	K32		-3.000000
P104	С		-102.699997
P104	R10		7.700000
P104	R11		5.400000
P104	R12		5-900000
0104	012		5 500000
P104	DIV.		5.500000
P104	R14		50.099991
P104	R15		8.900000
P104	R16		38.199997
P104	R21		5.000000
P104	R24		2.000000
P104	R 26		1.000000
P104	0 27	1.00	2.000000
P104	RZ1		2.000000
P104	K 29		-180.000000
P104	R32		-5.799999
P105	С		-68.349991
P105	R10		4.599999
P105	R11		5.700000
P105	R12		3.200000
D105	012		3 500000
P105	RID		3.500000
P105	R14		38.299988
P105	R15		8.450000
P105	R16		18.099991
P105	R22		5.00000
P105	R24		1,00000
P105	R 26		1 000000
P105	0 27		2.000000
P105	R 27		5.000000
P105	K29		-90.000000
P105	K32		-8.400000
P128	C		-125.899994
P128	R09		30.399994
P128	R10		14.599999
P128	R 1 1		17,199997
D128	012		12 700000
F120	012		12.177777
P128	KI3		54.000000
PIZ8	R14		21.000000
P128	R15		27.00000
P128	R16		24.000000
P128	R 33		6.000000
P128	R34		2.000000
P128	R35		65,000000
P128	R 38		-110.000000
P128	D/4		110.000000
r 120	R40		-2.549999

P128	R 66	1,000000
D128	884	490,000000
0120	C	120 000000
P129	6	-100.099994
P129	R09	30.399994
P129	R10	14.599999
P129	R11	17.199997
P129	R12	12.799999
P129	813	57,000000
0120	DIA	21 500000
P129	015	21.000000
P129	K15	27.000000
P129	R16	25.500000
P129	R30	7.700000
P129	R33	3.599999
P129	R 34	2.000000
D120	R 25	45.000000
0120	020	-110 000000
P129	K DO	-110.000000
P129	R46	-2.549999
P129	R66	1.000000
P129	R84	490.000000
P140	C	-21.000000
P140	R09	3.500000
P140	RIO	3.000000
0140	011	1 500000
P140	RII	1.500000
P140	K1Z	0.500000
P140	R13	8.750000
P140	R14	4.419999
P140	R15	5.580000
P140	R16	2.250000
P140	R 3 3	1.799999
D140	024	2 700000
P140	0.24	3.199999
P140	K 30	2.000000
P140	R39	-2.020000
P140	R42	-1.000000
P140	R46	-1.400000
P140	R67	1,000000
P140	R 84	294.569824
P150	C	-22 000001
0150	0.00	-22.077771
P150	RU9	4.200000
P150	RIO	2.299999
P150	R11	2.000000
P150	R12	2.500000
P150	R13	5.650000
P150	R14	4.150000
P150	R15	2.000000
PIED	RIA	7 540000
0150	010	1 200000
P150	K 2 2	1.200000
P150	K34	1.299999
P150	R35	46.000000
P150	R 39	4.500000
P150	R47	-11.250000
P150	R68	1.000000

P151	C	-26.430087	
P151	RGQ	4 200000	
P151	RIO	2 000000	
 P151	R12	1.000000	
P151	R13	10.750000	
P151	R14	4,200000	
P151	R15	5.700000	
P151	R16	3.049999	
D151	833	0.800000	
P151	R35	62.000000	
D151	020	4 500000	
P151	RAL	-10.500000	
0151	PAS	1 000000	
0150	C	-27 036087	
P152	D O O	- 210 93 9901	
PID2 0152	010	4.200000	
P102	R10	2.0999999	
P102	N 1 1	1.700000	
P152	R12	1.799999	
P152	RIS	11.500000	
P152	K14	4.200000	
P152	K15	5.700000	
P152	R16	3.799999	
 P152	R 30	4.000000	
P152	R 3 3	0.300000	
P152	R 35	40.000000	
P152	R 39	4.500000	
P152	R44	-10.750000	
P152	R 6 8	1.000000	
P153	C	-21.409988	
P153	R 0 9	4.200000	
P153	R10	2.200000	
P153	R12	1.599999	
P153	R13	10.900000	
P153	R14	3.750000	
P153	R16	5.049999	
P153	R33	1.000000	
P153	R 35	60.000000	
P153	R40	6.349999	
P153	R43	-11.500000	
P153	R 68	1.000000	
P154	C	-23.659988	
P154	R09	4.200000	
P154	R10	2.200000	
P154	R11	0.800000	
P154	R12	1.599999	
P154	R13	11-400000	
P154	R14	4.250000	<u>*</u>
P154 ·	R15	0.750000	
P154	R16	5.549999	
	1.1. da 197		

.

R 30 R 33	4.250000 0.300000
R 30	6.349999
R43	-12.000000
R68	1.000000
С	-16.509995
R 0 9	4.200000
R12	1.599999
R13	8.349999
K16	0 00000
K 2 2 5	42.000000
R 4 1	6.500000
R45	-10.250000
R68	1.000000
С	-19.509995
R 0 9	4.200000
R10	0.400000
R12	1.599999
K13	10.349999
R 10	3.250000
R 33	0.300000
R 35	30,000000
R41	6.500000
R45	-10.849999
R68	. 1.000000
С	-22.939987
R09	4.200000
R10	2.200000
KII D12	1.00000
R13	10.540999
R14	4.799999
R15	1.500000
R16	3.750000
R33	0.800000
R35	47.000000
R42	4.200000
R46	-8.700000
K 68	1.000000
RNO	- 90. 699997
R10	5.799999
R11	4,500000
R12	1.000000
R13	123.369995
R14	33.549988
R15	12.349999

P154 P154 P154 P154 P154 P155 P155 P155

P155 P155 P155

P155 P155

P155

P155 P156 P156 P156 P156 P156 P156 P156

P156 P156 P156 P156 P156 P157 P157

P168 P168 P168 P168 P168 P168 P168 P168

P168	R16			21.429993
P168	832			0.500000
P168	R35			64.000000
P168	R51			-2.599999
P168	R 54			-3.000000
P168	R 58			-3.299999
P168	R76			2.000000
P168	R 84			77.000000
P169	C		-	90.699997
P160	ROQ			11.700000
P169	810			1.200000
D140	D 11			9 000000
D140	DIO			1 0000000
P160	012			25 200088
P109	01/			15 750000
P109	KI4			15.750000
P109	K15			29.099991
P169	K16			10.549999
P169	K32			0.500000
P169	R35			64.000000
P169	R52			-2.599999
P169	R55			-3.000000
P169	R59			-3.299999
P169	R76			2.000000
P169	R84			77.000000
P180	C			-7.174999
P180	R09			1.099999
P180	R13			7.174999
P180	R35			11.400000
P180	R 50			C.400000
P180	R56			-2.200000
P180	R77			1.000000
P181	C			-7.174999
P181	R09			0.650000
P181	R10			0.450000
P181	R13			4.809999
P181	R14			2.360000
P181	R35			11.400000
P181	R51			0.400000
P181	R57			-2.200000
P181	R77			1.000000
P182	C		1.2	-7.174999
P182	R09			0.150000
P182	R10			0.750000
P182	R11			0.200000
P182	R14			5.740000
P182	R15			1.434999
P182	R35	- 14		11.400000
P182	R 52			0.400000
P182	858			-2.200000
P182	B 77			1.000000
	1.1.1			1.0000000

P183		С
P183		R10
P183		R11
P183		R14
P183		R15
P183		R35
P183		R 53
P183		R 58
P183		R77
P184		C
P184		R11
P184		R12
P184		R15
P184		R16
P184		R35
P184		R 54
P184		R 59
P184		R77
P185		C
P185		R09
P185		R12
P185		R13
P185		R16
P185		R35
P185		R 55
P185		R56
P185		R77
P200		С
P200		R13
P200		R15
P201		С
0202		-

-7.174999 0.350000 0.750000 2.400000 4.775000 11.400000 0.400000 -2.200000 1.000000 -7.174999 0.650000 0.450000 3.849999 3.325000 11.400000 0.400000 -2.200000 1.000000 -7.174999 0.450000 0.650000 3.325000 3.849999 11.400000 0.400000 -2.200000 1.000000 -1.000000 0.500000 0.500000 -1.000000 -1.000000